## Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

### The speed of a biased walk on a Galton–Watson tree without leaves is monotonic with respect to progeny distributions for high values of bias

#### Abstract

Consider biased random walks on two Galton–Watson trees without leaves having progeny distributions $P_{1}$ and $P_{2}$ ($\mathrm{GW}(P_{1})$ and $\mathrm{GW}(P_{2})$) where $P_{1}$ and $P_{2}$ are supported on positive integers and $P_{1}$ dominates $P_{2}$ stochastically. We prove that the speed of the walk on $\mathrm{GW}(P_{1})$ is bigger than the same on $\mathrm{GW}(P_{2})$ when the bias is larger than a threshold depending on $P_{1}$ and $P_{2}$. This partially answers a question raised by Ben Arous, Fribergh and Sidoravicius (Comm. Pure Appl. Math. 67 (2014) 519–530).

#### Résumé

Nous considérons des marches aléatoires biaisées sur deux arbres de Galton–Watson sans feuilles $\mathrm{GW}(P_{1})$ et $\mathrm{GW}(P_{2})$ ayant des lois de reproduction respectivement $P_{1}$ et $P_{2}$, deux lois supportées par les entiers positifs telles que $P_{1}$ domine stochastiquement $P_{2}$. Nous prouvons que la vitesse de la marche sur $\mathrm{GW}(P_{1})$ est supérieure ou égale á celle sur $\mathrm{GW}(P_{2})$ si le biais est plus grand qu’un seuil dépendant de $P_{1}$ et $P_{2}$. Ceci répond partiellement á une question posée par Ben Arous, Fribergh et Sidoravicius (Comm. Pure Appl. Math. 67 (2014) 519–530).

#### Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 51, Number 1 (2015), 304-318.

Dates
First available in Project Euclid: 14 January 2015

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1421244407

Digital Object Identifier
doi:10.1214/13-AIHP573

Mathematical Reviews number (MathSciNet)
MR3300972

Zentralblatt MATH identifier
1314.60160

#### Citation

Mehrdad, Behzad; Sen, Sanchayan; Zhu, Lingjiong. The speed of a biased walk on a Galton–Watson tree without leaves is monotonic with respect to progeny distributions for high values of bias. Ann. Inst. H. Poincaré Probab. Statist. 51 (2015), no. 1, 304--318. doi:10.1214/13-AIHP573. https://projecteuclid.org/euclid.aihp/1421244407

#### References

• [1] E. Aïdékon. Speed of the biased random walk on a Galton–Watson tree. Probab. Theory Related Fields. To appear, 2014. DOI:10.1007/s00440-013-0515-y.
• [2] K. B. Athreya. Large deviation rates for branching processes. I. Single type case. Ann. Appl. Probab. 4 (1994) 779–790.
• [3] G. Ben Arous, A. Fribergh and V. Sidoravicius. Lyons–Pemantle–Peres monotonicity problem for high biases. Comm Pure Appl. Math. 67 (2014) 519–530.
• [4] N. H. Bingham. On the limit of a supercritical branching process. J. Appl. Probab. 25 (1988) 215–228.
• [5] H. Kesten and B. P. Stigum. A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Statist. 37 (1966) 1211–1223.
• [6] R. Lyons. Random walks and percolation on trees. Ann. Probab. 18 (1990) 931–958.
• [7] R. Lyons, R. Pemantle and Y. Peres. Ergodic theory on Galton–Watson trees: Speed of random walk and dimension of harmonic measure. Erg. Theory Dynam. Syst. 15 (1995) 593–619.
• [8] R. Lyons, R. Pemantle and Y. Peres. Biased random walks on Galton–Watson trees. Probab. Theory Related Fields 106 (1996) 254–268.
• [9] R. Lyons, R. Pemantle and Y. Peres. Conceptual proofs of $L\log L$ criteria for mean behavior of branching processes. Ann. Probab. 23 (1995) 1125–1138.
• [10] O. Zeitouni. Random walks in random environment. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1837 189–312. Springer, Berlin, 2004.