Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Strong disorder in semidirected random polymers

N. Zygouras

Full-text: Open access

Abstract

We consider a random walk in a random potential, which models a situation of a random polymer and we study the annealed and quenched costs to perform long crossings from a point to a hyperplane. These costs are measured by the so called Lyapounov norms. We identify situations where the point-to-hyperplane annealed and quenched Lyapounov norms are different. We also prove that in these cases the polymer path exhibits localization.

Résumé

Nous considérons une marche aléatoire dans un potentiel aléatoire qui modèle la situation d’un polymère aléatoire et nous étudions les coûts “annealed” et “quenched” pour réaliser de longues traversées d’un point à un hyperplan. Ces coûts sont mesurés en terme de normes de Lyapounov. Nous identifions des situations où les normes de Lyapounov d’un point à un hyperplan “annealed” et “quenched” sont différentes. Nous démontrons également que dans ces cas le chemin du polymère présente une localisation.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 49, Number 3 (2013), 753-780.

Dates
First available in Project Euclid: 2 July 2013

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1372772643

Digital Object Identifier
doi:10.1214/12-AIHP483

Mathematical Reviews number (MathSciNet)
MR3112433

Zentralblatt MATH identifier
1290.82013

Subjects
Primary: 60xx

Keywords
Random walks Random potential Lyapounov norms Strong disorder Localization Fractional moments

Citation

Zygouras, N. Strong disorder in semidirected random polymers. Ann. Inst. H. Poincaré Probab. Statist. 49 (2013), no. 3, 753--780. doi:10.1214/12-AIHP483. https://projecteuclid.org/euclid.aihp/1372772643


Export citation

References

  • [1] E. Bolthausen. A note on the diffusion of directed polymers in a random environment. Comm. Math. Phys. 123 (1989) 529–534.
  • [2] E. Bolthausen and A. S. Sznitman. On the static and dynamic points of view for certain random walks in random environment. Methods Appl. Anal. 9 (2002) 345–375. Special issue dedicated to Daniel W. Stroock and Srinivasa S. R. Varadhan on the occasion of their 60th birthday.
  • [3] M. Campanino, D. Ioffe and Y. Velenik. Ornstein–Zernike theory for finite range Ising models above $T_{c}$. Probab. Theory Related Fields 125 (2003) 305–349.
  • [4] J. T. Chayes and L. Chayes. Ornstein–Zernike behavior for self-avoiding walks at all noncritical temperatures. Comm. Math. Phys. 105 (1986) 221–238.
  • [5] F. Comets and N. Yoshida. Directed polymers in random environment are diffusive at weak disorder. Ann. Probab. 34 (2006) 1746–1770.
  • [6] F. Comets, T. Shiga and N. Yoshida. Probabilistic analysis of directed polymers in a random environment: A review. In Stochastic Analysis on Large Scale Interacting Systems 115–142. Adv. Stud. Pure Math. 39. Math. Soc. Japan, Tokyo, 2004.
  • [7] M. Flury. Coincidence of Lyapunov exponents for random walks in weak random potentials. Ann. Probab. 36 (2008) 1528–1583.
  • [8] G. Giacomin, H. Lacoin and F. L. Toninelli. Marginal relevance of disorder for pinning models. Comm. Pure Appl. Math. 63 (2010) 233–265.
  • [9] D. Ioffe and Y. Velenik. Crossing random walks and stretched polymers at weak disorder. Available at arXiv:1002.4289.
  • [10] D. Ioffe and Y. Velenik. Ballistic phase of self-interacting random walks. In Analysis and Stochastics of Growth Processes and Interface Models 55–79. Oxford Univ. Press, Oxford, 2008.
  • [11] D. Ioffe and Y. Velenik. Stretched polymers in random environment. Available at arXiv:1011.0266.
  • [12] H. Kesten. First passage percolation. In From Classical to Modern Probability 93–143. Progr. Probab. 54. Birkhäuser, Basel, 2003.
  • [13] E. Kosygina, T. Mountford and M. P. W. Zerner. Lyapunov exponents of Green’s functions for random potentials tending to zero. Probab. Theory Related Fields 150 (2011) 43–59.
  • [14] H. Lacoin. New bounds for the free energy of directed polymer in dimension 1$+$1 and 1$+$2. Comm. Math. Phys. 294 (2010) 471–503.
  • [15] A. S. Sznitman. Annealed Lyapounov exponents and large deviations in a Poissonian potential. I. Ann. Sci. Éc. Norm. Supér. 28 (1995) 345–370.
  • [16] A. S. Sznitman. Brownian motion with a drift in a Poissonian potential. Comm. Pure Appl. Math. 47 (1994) 1283–1318.
  • [17] A. S. Sznitman. Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin, 1998.
  • [18] M. Trachsler. Phase transitions and fluctuations for random walks with drift in random potentials. Ph.D. thesis, Univ. Zurich.
  • [19] V. Vargas. Strong localization and macroscopic atoms for directed polymers. Probab. Theory Related Fields 138 (2007) 391–410.
  • [20] M. P. W. Zerner. Directional decay of the Green’s function for a random nonnegative potential on $Z^{d}$. Ann. Appl. Probab. 8 (1998) 246–280.
  • [21] N. Zygouras. Lyapounov norms for random walks in low disorder and dimension greater than three. Probab. Theory Related Fields 143 (2009) 615–642.