Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Excited against the tide: A random walk with competing drifts

Mark Holmes

Full-text: Open access

Abstract

We study excited random walks in i.i.d. random cookie environments in high dimensions, where the $k$th cookie at a site determines the transition probabilities (to the left and right) for the $k$th departure from that site. We show that in high dimensions, when the expected right drift of the first cookie is sufficiently large, the velocity is strictly positive, regardless of the strengths and signs of subsequent cookies. Under additional conditions on the cookie environment, we show that the limiting velocity of the random walk is continuous in various parameters of the model and is monotone in the expected strength of the first cookie at the origin. We also give non-trivial examples where the first cookie drift is in the opposite direction to all subsequent cookie drifts and the velocity is zero. The proofs are based on a cut-times result of Bolthausen, Sznitman and Zeitouni, the lace expansion for self-interacting random walks of van der Hofstad and Holmes, and a coupling argument.

Résumé

Nous étudions des marches aléatoires excitées dans un environnement de cookies indépendants en grande dimension, où le $k$ième cookie d’un site détermine le taux de transition (vers la droite ou la gauche) pour le $k$ième départ de ce site. Nous montrons qu’en grande dimension, quand le taux de saut moyen vers la droite du premier cookie est suffisamment grand, la vitesse est strictement positive, quelque soit l’amplitude et le signe des cookies suivants. Sous des conditions supplémentaires sur l’environnement des cookies, nous montrons que la vitesse est une fonction continue des divers paramètres du modèle et est monotone en la force moyenne du cookie à l’origine. Nous donnons aussi des examples non-triviaux où la dérive du premier cookie est dans le sens opposé à toutes les autres et où la vitesse est nulle. Les preuves se basent sur un résultat de temps de coupure de Bolthausen, Sznitman et Zeitouni, le développement en lacets de marches aléatoires auto-interagissantes de van der Hofstad et Holmes, et un argument de couplage.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 48, Number 3 (2012), 745-773.

Dates
First available in Project Euclid: 26 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1340714871

Digital Object Identifier
doi:10.1214/11-AIHP434

Mathematical Reviews number (MathSciNet)
MR2976562

Zentralblatt MATH identifier
1255.60179

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60K37: Processes in random environments 82B41: Random walks, random surfaces, lattice animals, etc. [See also 60G50, 82C41]

Keywords
Self-interacting random walk Cookie environment Lace expansion Monotonicity

Citation

Holmes, Mark. Excited against the tide: A random walk with competing drifts. Ann. Inst. H. Poincaré Probab. Statist. 48 (2012), no. 3, 745--773. doi:10.1214/11-AIHP434. https://projecteuclid.org/euclid.aihp/1340714871


Export citation

References

  • [1] T. Antal and S. Redner. The excited random walk in one dimension. J. Phys. A: Math. Gen. 38 (2005) 2555–2577.
  • [2] A.-L. Basdevant and A. Singh. On the speed of a cookie random walk. Probab. Theory Related Fields 141 (2008) 625–645.
  • [3] A.-L. Basdevant and A. Singh. Rate of growth of a transient cookie random walk. Electron. J. Probab. 13 (2008) 811–851.
  • [4] I. Benjamini and D. B. Wilson. Excited random walk. Electron. Commun. Probab. 8 (2003) 86–92.
  • [5] J. Bérard and A. Ramírez. Central limit theorem for excited random walk in dimension $d\ge2$. Electron. Commun. Probab. 12 (2007) 300–314.
  • [6] E. Bolthausen, A.-S. Sznitman and O. Zeitouni. Cut points and diffusive random walks in random environment. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 527–555.
  • [7] B. Davis. Brownian motion and random walk perturbed at extrema. Probab. Theory Related Fields 113 (1999) 501–518.
  • [8] T. Hara. Private communication, 2007.
  • [9] T. Hara and G. Slade. The lace expansion for self-avoiding walk in five or more dimensions. Rev. Math. Phys. 4 (1992) 235–327.
  • [10] R. van der Hofstad and M. Holmes. An expansion for self-interacting random walks. Brazilian J. Probab. Statist. 26 (2012) 1–55.
  • [11] R. van der Hofstad and M. Holmes. A monotonicity property for excited random walk in high dimensions. Probab. Theory Related Fields 147 (2010) 333–348.
  • [12] M. Holmes and T.S. Salisbury. A combinatorial result with applications to self-interacting random walks. Preprint, 2011.
  • [13] M. Holmes and R. Sun. A monotonicity property for random walk in a partially random environment. Available at arXiv:1005.0927v1, 2010.
  • [14] E. Kosygina and M. Zerner. Positively and negatively excited random walks on integers, with branching processes. Electron. J. Probab. 13 (2008) 1952–1979.
  • [15] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008. ISBN 3-900051-07-0.
  • [16] W. Rudin. Principles of Mathematical Analysis, 3rd edition. McGraw-Hill, New York, 1976.
  • [17] A.-S. Sznitman and M. Zerner. A law of large numbers for random walks in random environment. Ann. Probab. 27 (1999) 1851–1869.
  • [18] M. Zerner. Multi-excited random walks on integers. Probab. Theory Related Fields 133 (2005) 98–122.