Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Dynamical attraction to stable processes

Albert M. Fisher and Marina Talet

Full-text: Open access


We apply dynamical ideas within probability theory, proving an almost-sure invariance principle in log density for stable processes. The familiar scaling property (self-similarity) of the stable process has a stronger expression, that the scaling flow on Skorokhod path space is a Bernoulli flow. We prove that typical paths of a random walk with i.i.d. increments in the domain of attraction of a stable law can be paired with paths of a stable process so that, after applying a non-random regularly varying time change to the walk, the two paths are forward asymptotic in the flow except for a set of times of density zero. This implies that a.e. time-changed random walk path is a generic point for the flow, i.e. it gives all the expected time averages. For the Brownian case, making use of known results in the literature, one has a stronger statement: the random walk and the Brownian paths are forward asymptotic under the scaling flow (now with no exceptional set of times), at an exponential rate given by the moment assumption.


En appliquant des idées venues des systèmes dynamiques aux probabilités, nous prouvons un principe d’invariance presque sûr au sens de la densité logarithmique pour des processus stables. L’auto-similarité d’un processus stable revêt une expression plus forte, celle de la Bernoullicité du flot d’échelle agissant sur l’espace de Skorokhod des trajectoires. Nous montrons qu’il existe un couplage de la marche aléatoire à accroissements i.i.d. dans le domaine d’attraction d’une loi stable et d’un processus stable tel que presque sûrement, après un changement de temps déterministe et à variation régulière, sous l’action du flot d’échelle, les deux processus soient asymptotiques dans le futur sauf pour un ensemble de temps de densité nulle. Il en découle que presque toute marche (à un changement de temps près) est un point générique du flot. Dans le cas brownien, compte-tenu de résultats bien connus dans la littérature, nous avons un résultat plus fort : sous l’action du flot, les trajectoires de la marche et du brownien sont asymptotiques dans le futur avec une vitesse exponentielle donnée par l’hypothèse de moment.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 48, Number 2 (2012), 551-578.

First available in Project Euclid: 11 April 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 37A50: Relations with probability theory and stochastic processes [See also 60Fxx and 60G10] 60F17: Functional limit theorems; invariance principles 60G18: Self-similar processes 60G52: Stable processes

Brownian motion Stable process Almost-sure invariance principle in log density Generic point Pathwise Central Limit Theorem Scaling flow


Fisher, Albert M.; Talet, Marina. Dynamical attraction to stable processes. Ann. Inst. H. Poincaré Probab. Statist. 48 (2012), no. 2, 551--578. doi:10.1214/10-AIHP411.

Export citation


  • [1] J. Aaronson. An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs 50. Amer. Math. Soc., Providence, RI, 1997.
  • [2] W. Ambrose and S. Kakutani. Structure and continuity of measurable flows. Duke Math. J. 9 (1942) 25–42.
  • [3] I. Berkes and H. Dehling. Some limit theorems in log density. Ann. Probab. 21 (1993) 1640–1670.
  • [4] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968.
  • [5] N. H. Bingham, C. M. Goldie and J. L. Teugels. Regular Variation. Cambridge Univ. Press, Cambridge/New York, 1987.
  • [6] L. Breiman. On the tail behavior of sums of independent random variables. Z. Wahrsch. Verw. Gebiete 9 (1967) 20–25.
  • [7] G. Brosamler. An almost everywhere Central Limit Theorem. Math. Proc. Cambridge Philos. Soc. 104 (1988) 561–574.
  • [8] M. Csörgo and P. Révész. Strong Approximations in Probability and Statistics. Academic Press, New York, 1981.
  • [9] W. Feller. Probability Theory, Vol. II. Wiley, New York/Chichester/Brisbane/Toronto, 1966.
  • [10] W. Feller. Probability Theory, Vol. II, 2nd edition. Wiley, New York/Chichester/Brisbane/Toronto, 1971.
  • [11] A. M. Fisher. A Pathwise Central Limit Theorem for random walks. Preprint, Univ. Goettingen, 1989. Ann. Probab. To appear.
  • [12] A. M. Fisher. Convex-invariant means and a pathwise central limit theorem. Adv. in Math. 63 (1987) 213–246.
  • [13] A. M. Fisher, A. Lopes and M. Talet. Self-similar returns in the transition from finite to infinite measure. Unpublished manuscript, 2010.
  • [14] A. M. Fisher and M. Talet. The self-similar dynamics of renewal processes. Electron. J. Probab. 16 (2011) 929–961.
  • [15] S. Fomin. Finite invariant measures in the flows (Russian). Rec. Math. (Mat. Sbornik) N.S. 12 (1943) 99–108.
  • [16] H. Furstenberg. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton Univ. Press, Princeton, 1981.
  • [17] E. Glasner. Ergodic Theory via Joinings. Mathematicall Surveys and Monographs 101. Amer. Math. Soc., Providence, RI, 2003.
  • [18] P. Hall. A comedy of errors: The canonical form for a stable characteristic function. Bull. London Math. Soc. 13 (1981) 23–27.
  • [19] V. V. Kalashnikov. A complete metric in the space D[0, ∞). J. Math. Sci. 47 (1989) 2725–2730.
  • [20] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer, Berlin/Heidelberg/New York, 1988.
  • [21] J. Komlos, P. Major and G. Tusnady. An approximation of the partial sums of independent RV’s, and the sample DF. I. Z. Wahrsch. Verw. Gebiete 32 (1975) 111–131.
  • [22] J. Komlos, P. Major and G. Tusnady. An approximation of the partial sums of independent RV’s, and the sample DF. II. Z. Wahrsch. Verw. Gebiete 34 (1976) 33–58.
  • [23] M. Lacey and W. Philipp. A note on the almost sure central limit theorem. Statist. Probab. Lett. 9 (1990) 201–205.
  • [24] P. Lévy. Sur le développement en fraction continue d’un nombre choisi au hasard. Compositio Math. 3 (1936) 286–303.
  • [25] P. Major. Approximation of partial sums of i.i.d. r.v.s when the summands have only two moments. Z. Wahrsch. Verw. Gebiete 35 (1976) 221–229.
  • [26] P. Major. The approximation of partial sums of independent r.v.s. Z. Wahrsch. Verw. Gebiete 35 (1976) 213–220.
  • [27] P. Major. Almost sure functional limit theorems. Part I. The general case. Studia Sci. Math. Hungar. 34 (1998) 273–304.
  • [28] P. Major. Almost sure functional limit theorems. Part II. The case of independent random variables. Studia Sci. Math. Hungar. 36 (2000) 231–273.
  • [29] D. Ornstein. Ergodic Theory, Randomness and Dynamical Systems. Yale Mathematical Monographs 5. Yale Univ. Press, New Haven, 1973.
  • [30] V. A. Rohlin. On the fundamental ideas of measure theory. Mat. Sb. 25 (1949) 107–150.
  • [31] G. Samorodnitsky and M. Taqqu. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, New York, 1994.
  • [32] P. Schatte. On strong versions of the central limit theorem. Math. Nachr. 137 (1988) 249–256.
  • [33] P. Shields. The Theory of Bernoulli Shifts. Univ. Chicago Press, Chicago, 1973.
  • [34] C. Stone. Weak convergence of stochastic processes defined on semi-infinite time intervals. Proc. Amer. Math. Soc. 14 (1963) 694–696.
  • [35] V. Strassen. An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3 (1964) 211–226.
  • [36] V. Strassen. Almost-sure behavior of sums of independent random variables and martingales. In Proc. 5th Berkeley Symp. Math. Stat. and Prob., Vol. 2 315–343. Univ. California Press, Berkeley, CA, 1965.
  • [37] P. Walters. An Introduction to Ergodic Theory. Springer, New York/Berlin, 1982.
  • [38] W. Whitt. Some useful functions for functional limit theorems. Math. Oper. Res. 5 (1980) 67–85.