Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces

Yuri Bakhtin and Matilde Martínez

Full-text: Open access


$\mathcal{L}$ denotes a (compact, nonsingular) lamination by hyperbolic Riemann surfaces. We prove that a probability measure on $\mathcal{L}$ is harmonic if and only if it is the projection of a measure on the unit tangent bundle $T^{1}\mathcal{L}$ of $\mathcal{L}$ which is invariant under both the geodesic and the horocycle flows.


$\mathcal{L}$ denote une lamination (compacte, nonsingulière) par surfaces de Riemann hyperboliques. On montre qu’ une mesure sur $\mathcal{L}$ est harmonique si et seulement si elle est la projection d’une mesure sur le fibré tangent unitaire $T^{1}\mathcal{L}$ qui est invariante sous les flots géodesique et horocyclique.

Article information

Ann. Inst. H. Poincaré Probab. Statist., Volume 44, Number 6 (2008), 1078-1089.

First available in Project Euclid: 21 November 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 37C12 58J65: Diffusion processes and stochastic analysis on manifolds [See also 35R60, 60H10, 60J60] 37D40: Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)

Foliated spaces harmonic measures Brownian Motion on the hyperbolic plane geodesic flow horocycle flow


Bakhtin, Yuri; Martínez, Matilde. A characterization of harmonic measures on laminations by hyperbolic Riemann surfaces. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008), no. 6, 1078--1089. doi:10.1214/07-AIHP147.

Export citation


  • [1] C. Bonatti and X. Gómez-Mont. Sur le comportement statistique des feuilles de certains feuilletages holomorphes. Essays on geometry and related topics, Vol. 1, 2. Monogr. Enseign. Math. 38 15–41. Enseignement Math., Geneva, 2001.
  • [2] C. Bonatti, X. Gómez-Mont and R. Vila-Feyer. The foliated geodesic flow on Riccati equations, 2001. Preprint.
  • [3] A. Candel. Uniformization of surface laminations. Ann. Sci. École Norm. Sup. (4) 26 (1993) 489–516.
  • [4] A. Candel. The harmonic measures of Lucy Garnett. Adv. Math. 176 (2003) 187–247.
  • [5] I. Chavel. Eigenvalues in Riemannian Geometry. Academic Press Inc., Orlando, FL, 1984 (including a chapter by Burton Randol, with an appendix by Jozef Dodziuk).
  • [6] B. Deroin and V. Kleptsyn. Random conformal dynamical systems. Geom. Funct. Anal. (2006). To appear.
  • [7] L. Garnett. Foliations, the ergodic theorem and Brownian motion. J. Funct. Anal. 51 (1983) 285–311.
  • [8] M. Heins. Selected Topics in the Classical Theory of Functions of a Complex Variable. Holt, Rinehart and Winston, New York, 1962.
  • [9] K. Itô and H. P. McKean, Jr. Diffusion Processes and Their Sample Paths. Springer, Berlin, 1974 (second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 125).
  • [10] P. Jiménez. Un subconjunto particular de la variedad de representaciones n-dimensional Rn(Gg). Thesis, Centro de Investigación en Matemáticas, A.C., 2006.
  • [11] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer, New York, 1988.
  • [12] A. Manning. Dynamics of geodesic and horocycle flows on surfaces of constant negative curvature. Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces (Trieste, 1989) 71–91. Oxford Sci. Publ., Oxford Univ. Press, New York, 1991.
  • [13] P. March. Brownian motion and harmonic functions on rotationally symmetric manifolds. Ann. Probab. 14 (1986) 793–801.
  • [14] M. Martínez. Measures on hyperbolic surface laminations. Ergodic Theory Dynam. Systems 26 (2006) 847–867.
  • [15] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Springer, Berlin, 1999.
  • [16] H. Thorisson. Coupling, Stationarity, and Regeneration. Springer, New York, 2000.
  • [17] R. J. Zimmer. Ergodic Theory and Semisimple Groups. Birkhäuser, Basel, 1984.