Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

Limit laws for the energy of a charged polymer

Xia Chen

Full-text: Open access

Abstract

In this paper we obtain the central limit theorems, moderate deviations and the laws of the iterated logarithm for the energy $$H_n=\sum_{1≤j<k≤n}ω_jω_k1_{\{S_j=S_k\}}$$ of the polymer $\{S_1, …, S_n\}$ equipped with random electrical charges $\{ω_1, …, ω_n\}$. Our approach is based on comparison of the moments between $H_n$ and the self-intersection local time $$Q_n=\sum_{1≤j<k≤n}1_{\{S_j=S_k\}}$$ run by the $d$-dimensional random walk $\{S_k\}$. As partially needed for our main objective and partially motivated by their independent interest, the central limit theorems and exponential integrability for $Q_n$ are also investigated in the case $d≥3$.

Résumé

Cet article est consacré à l’étude du théorème central limite, des déviations modérées et des lois du logarithme itéré pour l’énergie $$H_n=\sum_{1≤j<k≤n}ω_jω_k1_{\{S_j=S_k\}}$$ du polymère $\{S_1, …, S_n\}$ doté de charges électriques $\{ω_1, …, ω_n\}$. Notre approche se base sur la comparaison des moments de $H_n$ et du temps local de recoupements $$Q_n=\sum_{1≤j<k≤n}1_{\{S_j=S_k\}}$$ de la marche aléatoire $d$-dimensionelle $\{S_k\}$. L’étude du théorème central limite et de l’intégrabilité exponentielle de $Q_n$ (dans le cas $d≥3$) est également menée, tant pour comme outil pour notre principal objectif que pour son intérêt intrinsèque.

Article information

Source
Ann. Inst. H. Poincaré Probab. Statist., Volume 44, Number 4 (2008), 638-672.

Dates
First available in Project Euclid: 5 August 2008

Permanent link to this document
https://projecteuclid.org/euclid.aihp/1217964114

Digital Object Identifier
doi:10.1214/07-AIHP120

Mathematical Reviews number (MathSciNet)
MR2446292

Zentralblatt MATH identifier
1178.60024

Subjects
Primary: 60F05: Central limit and other weak theorems 60F10: Large deviations 60F15: Strong theorems

Keywords
Charged polymer Self-intersection local time Central limit theorem Moderate deviation Laws of the iterated logarithm

Citation

Chen, Xia. Limit laws for the energy of a charged polymer. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008), no. 4, 638--672. doi:10.1214/07-AIHP120. https://projecteuclid.org/euclid.aihp/1217964114


Export citation

References

  • [1] A. Asselah and F. Castell. Self-intersection local times for random walk, and random walk in random scenery in dimension d≥5. Preprint, 2005. Available at http://arxiv.org/math.PR/0509721arXiv:math.PR/0509721.
  • [2] A. Asselah. Large deviation estimates for self-intersection local times for simple random walk in ℤ3. Probab. Theory Related Fields. To appear.
  • [3] R. F. Bass, X. Chen and J. Rosen. Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks. Electron. J. Probab. 11 (2006) 993–1030.
  • [4] E. Buffet and J. V. Pulé. A model of continuous polymers with random charges. J. Math. Phys. 38 (1997) 5143–5152.
  • [5] X. Chen. On the law of the iterated logarithm for local times of recurrent random walks. In High Dimensional Probability II (Seattle, WA, 1999) 249–259, 2000.
  • [6] X. Chen. Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks. Ann. Probab. 32 (2004) 3248–3300.
  • [7] X. Chen. Moderate deviations and law of the iterated logarithm for intersections of the range of random walks. Ann. Probab. 33 (2005) 1014–1059.
  • [8] X. Chen and W. Li. Large and moderate deviations for intersection local times. Probab. Theory Related Fields 128 (2004) 213–254.
  • [9] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998.
  • [10] B. Derrida, R. B. Griffiths and R. G. Higgs. A model of directed walks with random self interactions. Europhys. Lett. 18 (1992) 361–366.
  • [11] B. Derrida and P. G. Higgs. Low-temperature properties of directed walks with random self-interactions. J. Phys. A 27 (1994) 5485–5493.
  • [12] R. van der Hofstad and W. König. A survey of one-dimensional random polymers. J. Statist. Phys. 103 (2001) 915–944.
  • [13] N. C. Jain and W. E. Pruitt. The range of transient random walk. J. Anal. Math. 24 (1971) 369–393.
  • [14] N. C. Jain and W. E. Pruitt. Further limit theorem for the range of random walk. J. Anal. Math. 27 (1974) 94–117.
  • [15] N. C. Jain and W. E. Pruitt. Asymptotic behavior of the local time of a recurrent random walk. Ann. Probab. 11 (1984) 64–85.
  • [16] Y. Kantor and M. Kardar. Polymers with self-interactions. Europhys. Lett. 14 (1991) 421–426.
  • [17] J.-F. Le Gall and J. Rosen. The range of stable random walks. Ann. Probab. 19 (1991) 650–705.
  • [18] S. Martínez and D. Petritis. Thermodynamics of a Brownian bridge polymer model in a random environment. J. Phys. A 29 (1996) 1267–1279.
  • [19] P. Révész. Random Walks in Random and Non-Random Environments. World Scientific, London, 1990.
  • [20] J. Rosen. Random walks and intersection local time. Ann. Probab. 18 (1990) 959–977.
  • [21] F. Spitzer. Principles of Random Walk. Van Nostrand, Princeton, New Jersey, 1964.