Algebraic & Geometric Topology

The little bundles operad

Lukas Müller and Lukas Woike

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/agt.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Hurwitz spaces are homotopy quotients of the braid group action on the moduli space of principal bundles over a punctured plane. By considering a certain model for this homotopy quotient we build an aspherical topological operad that we call the little bundles operad. As our main result, we describe this operad as a groupoid-valued operad in terms of generators and relations and prove that the categorical little bundles algebras are precisely braided G–crossed categories in the sense of Turaev. Moreover, we prove that the evaluation on the circle of a homotopical two-dimensional equivariant topological field theory yields a little bundles algebra up to coherent homotopy.

Article information

Source
Algebr. Geom. Topol., Volume 20, Number 4 (2020), 2029-2070.

Dates
Received: 12 March 2019
Revised: 21 September 2019
Accepted: 1 October 2019
First available in Project Euclid: 1 August 2020

Permanent link to this document
https://projecteuclid.org/euclid.agt/1596247245

Digital Object Identifier
doi:10.2140/agt.2020.20.2029

Mathematical Reviews number (MathSciNet)
MR4127089

Zentralblatt MATH identifier
07226710

Subjects
Primary: 18D50: Operads [See also 55P48]
Secondary: 18D10: Monoidal categories (= multiplicative categories), symmetric monoidal categories, braided categories [See also 19D23] 57R56: Topological quantum field theories

Keywords
operad topological field theory braid group monoidal category braided monoidal category

Citation

Müller, Lukas; Woike, Lukas. The little bundles operad. Algebr. Geom. Topol. 20 (2020), no. 4, 2029--2070. doi:10.2140/agt.2020.20.2029. https://projecteuclid.org/euclid.agt/1596247245


Export citation

References

  • D Ben-Zvi, J Francis, D Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010) 909–966
  • M Benini, A Schenkel, L Woike, Operads for algebraic quantum field theory, preprint (2017)
  • C Berger, I Moerdijk, Resolution of coloured operads and rectification of homotopy algebras, from “Categories in algebra, geometry and mathematical physics” (A Davydov, M Batanin, M Johnson, S Lack, A Neeman, editors), Contemp. Math. 431, Amer. Math. Soc., Providence, RI (2007) 31–58
  • J M Boardman, R M Vogt, Homotopy-everything $H$–spaces, Bull. Amer. Math. Soc. 74 (1968) 1117–1122
  • J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. 347, Springer (1973)
  • G E Bredon, Topology and geometry, Graduate Texts in Math. 139, Springer (1993)
  • D Calaque, C Scheimbauer, A note on the $(\infty,n)$–category of cobordisms, Algebr. Geom. Topol. 19 (2019) 533–655
  • A Clebsch, Zur Theorie der Riemann'schen Fläche, Math. Ann. 6 (1873) 216–230
  • P Deligne, D Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969) 75–109
  • J S Ellenberg, A Venkatesh, C Westerland, Homological stability for Hurwitz spaces and the Cohen–Lenstra conjecture over function fields, Ann. of Math. 183 (2016) 729–786
  • P Etingof, D Nikshych, V Ostrik, Fusion categories and homotopy theory, Quantum Topol. 1 (2010) 209–273
  • B Fresse, Homotopy of operads and Grothendieck–Teichmüller groups, I: The algebraic theory and its topological background, Mathematical Surveys and Monographs 217, Amer. Math. Soc., Providence, RI (2017)
  • S Galatius, U Tillmann, I Madsen, M Weiss, The homotopy type of the cobordism category, Acta Math. 202 (2009) 195–239
  • C Galindo, Coherence for monoidal $G$–categories and braided $G$–crossed categories, J. Algebra 487 (2017) 118–137
  • S Gelaki, D Naidu, D Nikshych, Centers of graded fusion categories, Algebra Number Theory 3 (2009) 959–990
  • E Getzler, Batalin–Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994) 265–285
  • S Hollander, A homotopy theory for stacks, Israel J. Math. 163 (2008) 93–124
  • A Hurwitz, Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891) 1–60
  • M Kapranov, V Voevodsky, Braided monoidal $2$–categories and Manin–Schechtman higher braid groups, J. Pure Appl. Algebra 92 (1994) 241–267
  • R M Kaufmann, Orbifold Frobenius algebras, cobordisms and monodromies, from “Orbifolds in mathematics and physics” (A Adem, J Morava, Y Ruan, editors), Contemp. Math. 310, Amer. Math. Soc., Providence, RI (2002) 135–161
  • A Kirillov Jr, On $G$–equivariant modular categories, preprint (2004)
  • J Maier, T Nikolaus, C Schweigert, Equivariant modular categories via Dijkgraaf–Witten theory, Adv. Theor. Math. Phys. 16 (2012) 289–358
  • M Müger, Galois extensions of braided tensor categories and braided crossed $G$–categories, J. Algebra 277 (2004) 256–281
  • L Müller, L Woike, Equivariant higher Hochschild homology and topological field theories, Homology Homotopy Appl. 22 (2020) 27–54
  • L Müller, L Woike, Parallel transport of higher flat gerbes as an extended homotopy quantum field theory, J. Homotopy Relat. Struct. 15 (2020) 113–142
  • E Riehl, Categorical homotopy theory, New Mathematical Monographs 24, Cambridge Univ. Press (2014)
  • C Schweigert, L Woike, Extended homotopy quantum field theories and their orbifoldization, J. Pure Appl. Algebra 224 (2020) art. id. 106213
  • C H Taubes, Differential geometry: bundles, connections, metrics and curvature, Oxford Graduate Texts in Mathematics 23, Oxford Univ. Press (2011)
  • R W Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979) 91–109
  • V Turaev, Homotopy field theory in dimension $3$ and crossed group-categories, preprint (2000)
  • V Turaev, Homotopy quantum field theory, EMS Tracts in Mathematics 10, Eur. Math. Soc., Zürich (2010)
  • V Turaev, A Virelizier, On $3$–dimensional homotopy quantum field theory, I, Internat. J. Math. 23 (2012) art. id. 1250094
  • V Turaev, A Virelizier, On $3$–dimensional homotopy quantum field theory, II: The surgery approach, Internat. J. Math. 25 (2014) art. id. 1450027
  • D Yau, Colored operads, Graduate Studies in Mathematics 170, Amer. Math. Soc., Providence, RI (2016)
  • D Yau, Homotopical quantum field theory, preprint (2018)