Algebraic & Geometric Topology

A May-type spectral sequence for higher topological Hochschild homology

Gabe Angelini-Knoll and Andrew Salch

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/agt.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Given a filtration of a commutative monoid A in a symmetric monoidal stable model category C , we construct a spectral sequence analogous to the May spectral sequence whose input is the higher order topological Hochschild homology of the associated graded commutative monoid of A , and whose output is the higher order topological Hochschild homology of A . We then construct examples of such filtrations and derive some consequences: for example, given a connective commutative graded ring  R , we get an upper bound on the size of the THH –groups of E –ring spectra  A such that π ( A ) R .

Article information

Source
Algebr. Geom. Topol., Volume 18, Number 5 (2018), 2593-2660.

Dates
Received: 1 December 2016
Revised: 28 January 2018
Accepted: 3 March 2018
First available in Project Euclid: 30 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.agt/1535594418

Digital Object Identifier
doi:10.2140/agt.2018.18.2593

Mathematical Reviews number (MathSciNet)
MR3848395

Zentralblatt MATH identifier
06935816

Subjects
Primary: 18G30: Simplicial sets, simplicial objects (in a category) [See also 55U10] 19D55: $K$-theory and homology; cyclic homology and cohomology [See also 18G60] 55P42: Stable homotopy theory, spectra
Secondary: 55T05: General

Keywords
homotopy theory higher topological Hochschild homology spectral sequences filtered commutative monoid Whitehead tower

Citation

Angelini-Knoll, Gabe; Salch, Andrew. A May-type spectral sequence for higher topological Hochschild homology. Algebr. Geom. Topol. 18 (2018), no. 5, 2593--2660. doi:10.2140/agt.2018.18.2593. https://projecteuclid.org/euclid.agt/1535594418


Export citation

References

  • G Angelini-Knoll, On topological Hochschild homology of the $K(1)$–local sphere, preprint (2016)
  • G Angelini-Knoll, A Salch, Maps of simplicial spectra whose realizations are cofibrations, preprint (2016)
  • V Angeltveit, On the algebraic $K``$–theory of Witt vectors of finite length, preprint (2011)
  • V Angeltveit, M A Hill, T Lawson, Topological Hochschild homology of $\ell$ and $ko$, Amer. J. Math. 132 (2010) 297–330
  • C Ausoni, Topological Hochschild homology of connective complex $K``$–theory, Amer. J. Math. 127 (2005) 1261–1313
  • M Basterra, André–Quillen cohomology of commutative $S``$–algebras, J. Pure Appl. Algebra 144 (1999) 111–143
  • M Bayeh, K Hess, V Karpova, M Kędziorek, E Riehl, B Shipley, Left-induced model structures and diagram categories, from “Women in topology: collaborations in homotopy theory” (M Basterra, K Bauer, K Hess, B Johnson, editors), Contemp. Math. 641, Amer. Math. Soc., Providence, RI (2015) 49–81
  • J M Boardman, Conditionally convergent spectral sequences, from “Homotopy invariant algebraic structures” (J-P Meyer, J Morava, W S Wilson, editors), Contemp. Math. 239, Amer. Math. Soc., Providence, RI (1999) 49–84
  • M Bökstedt, The topological Hochschild homology of $\mathbb{Z}$ and of $\mathbb{Z}/p\mathbb{Z}$, unpublished manuscript (1987)
  • A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer (1972)
  • M Brun, Topological Hochschild homology of ${\bf Z}/p^n$, J. Pure Appl. Algebra 148 (2000) 29–76
  • M Brun, Filtered topological cyclic homology and relative $K``$–theory of nilpotent ideals, Algebr. Geom. Topol. 1 (2001) 201–230
  • H Cartan, S Eilenberg, Homological algebra, Princeton Univ. Press (1956)
  • B Day, Construction of biclosed categories, PhD thesis, University of New South Wales (1970) Available at \setbox0\makeatletter\@url http://www.math.mq.edu.au/~street/DayPhD.pdf {\unhbox0
  • D Dugger, Combinatorial model categories have presentations, Adv. Math. 164 (2001) 177–201
  • D Dugger, Multiplicative structures on homotopy spectral sequences, II, preprint (2003)
  • D Dugger, A primer on homotopy colimits, unpublished manuscript (2008) Available at \setbox0\makeatletter\@url http://math.uoregon.edu/~ddugger/hocolim.pdf {\unhbox0
  • W G Dwyer, D M Kan, Function complexes in homotopical algebra, Topology 19 (1980) 427–440
  • S Eilenberg, N E Steenrod, Axiomatic approach to homology theory, Proc. Nat. Acad. Sci. U. S. A. 31 (1945) 117–120
  • A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, Amer. Math. Soc., Providence, RI (1997)
  • N Gambino, Weighted limits in simplicial homotopy theory, J. Pure Appl. Algebra 214 (2010) 1193–1199
  • O Gwilliam, D Pavlov, Enhancing the filtered derived category, preprint (2016)
  • J E Harper, Bar constructions and Quillen homology of modules over operads, Algebr. Geom. Topol. 10 (2010) 87–136
  • M Hovey, Model categories, Mathematical Surveys and Monographs 63, Amer. Math. Soc., Providence, RI (1999)
  • M Hovey, Some spectral sequences in Morava $E``$–theory, unpublished manuscript (2004) Available at \setbox0\makeatletter\@url http://hopf.math.purdue.edu/Hovey/morava-E-SS.pdf {\unhbox0
  • M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149–208
  • S B Isaacson, Cubical homotopy theory and monoidal model categories, PhD thesis, Harvard University (2009) Available at \setbox0\makeatletter\@url http://search.proquest.com/docview/304891860 {\unhbox0
  • G M Kelly, Basic concepts of enriched category theory, London Mathematical Society Lecture Note Series 64, Cambridge Univ. Press (1982)
  • J-L Loday, Opérations sur l'homologie cyclique des algèbres commutatives, Invent. Math. 96 (1989) 205–230
  • S Mac Lane, Homology, Grundl. Math. Wissen. 114, Academic, New York (1963)
  • S Mac Lane, Categories for the working mathematician, 2nd edition, Graduate Texts in Mathematics 5, Springer (1998)
  • M A Mandell, J P May, S Schwede, B Shipley, Model categories of diagram spectra, Proc. London Math. Soc. 82 (2001) 441–512
  • J P May, The cohomology of restricted Lie algebras and of Hopf algebras: application to the Steenrod algebra, PhD thesis, Princeton University (1964) Available at \setbox0\makeatletter\@url http://search.proquest.com/docview/302273947 {\unhbox0
  • J P May, The additivity of traces in triangulated categories, Adv. Math. 163 (2001) 34–73
  • J McClure, R Schwänzl, R Vogt, $\mathrm{THH}(R)\cong R\otimes S^1$ for $E_\infty$ ring spectra, J. Pure Appl. Algebra 121 (1997) 137–159
  • J E McClure, R E Staffeldt, On the topological Hochschild homology of $bu$, I, Amer. J. Math. 115 (1993) 1–45
  • T Pirashvili, Hodge decomposition for higher order Hochschild homology, Ann. Sci. École Norm. Sup. 33 (2000) 151–179
  • D G Quillen, Homotopical algebra, Lecture Notes in Mathematics 43, Springer (1967)
  • C Reedy, Homotopy theory of model categories, unpublished manuscript (1973) Available at \setbox0\makeatletter\@url http://www-math.mit.edu/~psh/reedy.pdf {\unhbox0
  • R Schwänzl, R M Vogt, F Waldhausen, Topological Hochschild homology, J. London Math. Soc. 62 (2000) 345–356
  • S Schwede, $S``$–modules and symmetric spectra, Math. Ann. 319 (2001) 517–532
  • S Schwede, An untitled book project about symmetric spectra, book project (2007) Available at \setbox0\makeatletter\@url http://www.math.uni-bonn.de/people/schwede/SymSpec.pdf {\unhbox0
  • S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. 80 (2000) 491–511
  • D White, Model structures on commutative monoids in general model categories, J. Pure Appl. Algebra 221 (2017) 3124–3168