Algebraic & Geometric Topology

Relative $2$–Segal spaces

Matthew B Young

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/agt.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We introduce a relative version of the 2 –Segal simplicial spaces defined by Dyckerhoff and Kapranov, and Gálvez-Carrillo, Kock and Tonks. Examples of relative 2 –Segal spaces include the categorified unoriented cyclic nerve, real pseudoholomorphic polygons in almost complex manifolds and the –construction from Grothendieck–Witt theory. We show that a relative 2 –Segal space defines a categorical representation of the Hall algebra associated to the base 2 –Segal space. In this way, after decategorification we recover a number of known constructions of Hall algebra representations. We also describe some higher categorical interpretations of relative 2 –Segal spaces.

Article information

Source
Algebr. Geom. Topol., Volume 18, Number 2 (2018), 975-1039.

Dates
Received: 8 February 2017
Revised: 7 October 2017
Accepted: 30 October 2017
First available in Project Euclid: 22 March 2018

Permanent link to this document
https://projecteuclid.org/euclid.agt/1521684027

Digital Object Identifier
doi:10.2140/agt.2018.18.975

Mathematical Reviews number (MathSciNet)
MR3773745

Zentralblatt MATH identifier
06859611

Subjects
Primary: 18G30: Simplicial sets, simplicial objects (in a category) [See also 55U10]
Secondary: 18G55: Homotopical algebra 16G20: Representations of quivers and partially ordered sets 19G38: Hermitian $K$-theory, relations with $K$-theory of rings

Keywords
higher Segal spaces categorified Hall algebra representations categories with duality Grothendieck-Witt theory

Citation

Young, Matthew B. Relative $2$–Segal spaces. Algebr. Geom. Topol. 18 (2018), no. 2, 975--1039. doi:10.2140/agt.2018.18.975. https://projecteuclid.org/euclid.agt/1521684027


Export citation

References

  • J E Bergner, A M Osorno, V Ozornova, M Rovelli, C I Scheimbauer, $2$–Segal sets and the Waldhausen construction, preprint (2016)
  • T Bridgeland, Stability conditions on triangulated categories, Ann. of Math. 166 (2007) 317–345
  • P B de Brito, Segal objects and the Grothendieck construction, preprint (2016)
  • H Derksen, J Weyman, Generalized quivers associated to reductive groups, Colloq. Math. 94 (2002) 151–173
  • V Drinfeld, On the notion of geometric realization, Mosc. Math. J. 4 (2004) 619–626
  • T Dyckerhoff, Higher categorical aspects of Hall algebras, preprint (2015)
  • T Dyckerhoff, M Kapranov, Higher Segal spaces, I, preprint (2012)
  • T Dyckerhoff, M Kapranov, Triangulated surfaces in triangulated categories, preprint (2013)
  • T Dyckerhoff, M Kapranov, Crossed simplicial groups and structured surfaces, from “Stacks and categories in geometry, topology, and algebra” (T Pantev, C Simpson, B Toën, M Vaquié, G Vezzosi, editors), Contemp. Math. 643, Amer. Math. Soc., Providence, RI (2015) 37–110
  • N Enomoto, A quiver construction of symmetric crystals, Int. Math. Res. Not. 2009 (2009) 2200–2247
  • H Franzen, On cohomology rings of non-commutative Hilbert schemes and CoHa-modules, Math. Res. Lett. 23 (2016) 805–840
  • I Gálvez-Carrillo, J Kock, A Tonks, Decomposition spaces, incidence algebras and Möbius inversion, I: Basic theory, preprint (2015)
  • J A Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955) 402–447
  • G Heuts, I Moerdijk, Left fibrations and homotopy colimits, Math. Z. 279 (2015) 723–744
  • J Hornbostel, M Schlichting, Localization in Hermitian $K$–theory of rings, J. London Math. Soc. 70 (2004) 77–124
  • A Hubery, From triangulated categories to Lie algebras: a theorem of Peng and Xiao, from “Trends in representation theory of algebras and related topics” (J A de la Peña, R Bautista, editors), Contemp. Math. 406, Amer. Math. Soc., Providence, RI (2006) 51–66
  • A Joyal, The theory of quasi-categories, I, in preparation
  • A Joyal, R Street, The category of representations of the general linear groups over a finite field, J. Algebra 176 (1995) 908–946
  • A Joyal, M Tierney, Quasi-categories vs Segal spaces, from “Categories in algebra, geometry and mathematical physics” (A Davydov, M Batanin, M Johnson, S Lack, A Neeman, editors), Contemp. Math. 431, Amer. Math. Soc., Providence, RI (2007) 277–326
  • D Joyce, Configurations in abelian categories, II: Ringel–Hall algebras, Adv. Math. 210 (2007) 635–706
  • R M Kashaev, Quantization of Teichmüller spaces and the quantum dilogarithm, Lett. Math. Phys. 43 (1998) 105–115
  • M Kontsevich, Y Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, preprint (2008)
  • M Kontsevich, Y Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231–352
  • M A A van Leeuwen, An application of Hopf-algebra techniques to representations of finite classical groups, J. Algebra 140 (1991) 210–246
  • J Lurie, Higher topos theory, Annals of Mathematics Studies 170, Princeton Univ. Press (2009)
  • G Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991) 365–421
  • I G Macdonald, Polynomial functors and wreath products, J. Pure Appl. Algebra 18 (1980) 173–204
  • V Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003) 177–206
  • R C Penner, Decorated Teichmüller theory, Eur. Math. Soc., Zürich (2012)
  • H-G Quebbemann, W Scharlau, M Schulte, Quadratic and Hermitian forms in additive and abelian categories, J. Algebra 59 (1979) 264–289
  • D Quillen, Higher algebraic $K$–theory, I, from “Algebraic $K$–theory, I: Higher $K$–theories”, Lecture Notes in Math. 341, Springer (1973) 85–147
  • C Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001) 973–1007
  • C M Ringel, Hall algebras, from “Topics in algebra, I” (S Balcerzyk, T Józefiak, J Krempa, D Simson, W Vogel, editors), Banach Center Publ. 26, PWN, Warsaw (1990) 433–447
  • O Schiffmann, Lectures on Hall algebras, from “Geometric methods in representation theory, II” (M Brion, editor), Sémin. Congr. 24, Soc. Math. France, Paris (2012) 1–141
  • M Schlichting, Hermitian $K$–theory of exact categories, J. K-Theory 5 (2010) 105–165
  • M Schlichting, The Mayer–Vietoris principle for Grothendieck–Witt groups of schemes, Invent. Math. 179 (2010) 349–433
  • G Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 105–112
  • G Segal, Categories and cohomology theories, Topology 13 (1974) 293–312
  • J M Shapiro, D Yao, Hermitian ${\mathcal U}$–theory of exact categories with duality functors, J. Pure Appl. Algebra 109 (1996) 323–330
  • S Shelley-Abrahamson, Hopf modules and representations of finite wreath products, Algebr. Represent. Theory 20 (2017) 123–145
  • Y Soibelman, Remarks on cohomological Hall algebras and their representations, from “Arbeitstagung Bonn 2013” (W Ballmann, C Blohmann, G Faltings, P Teichner, D Zagier, editors), Progr. Math. 319, Springer (2016) 355–385
  • M Szczesny, Representations of quivers over $\mathbb F_1$ and Hall algebras, Int. Math. Res. Not. 2012 (2012) 2377–2404
  • R W Thomason, T Trobaugh, Higher algebraic $K$–theory of schemes and of derived categories, from “The Grothendieck Festschrift, III” (P Cartier, L Illusie, N M Katz, G Laumon, K A Ribet, editors), Progr. Math. 88, Birkhäuser, Boston (1990) 247–435
  • Y Varshavskiĭ, D Kazhdan, The Yoneda lemma for complete Segal spaces, Funktsional. Anal. i Prilozhen. 48 (2014) 3–38 In Russian; translated in Funct. Anal. Appl. 48 (2014) 81–106
  • T Walde, Hall monoidal categories and categorical modules, preprint (2016)
  • F Waldhausen, Algebraic $K$–theory of spaces, from “Algebraic and geometric topology” (A Ranicki, N Levitt, F Quinn, editors), Lecture Notes in Math. 1126, Springer (1985) 318–419
  • M B Young, The Hall module of an exact category with duality, J. Algebra 446 (2016) 291–322
  • M B Young, Representations of cohomological Hall algebras and Donaldson–Thomas theory with classical structure groups, preprint (2016)
  • A V Zelevinsky, Representations of finite classical groups: a Hopf algebra approach, Lecture Notes in Math. 869, Springer (1981)