Algebraic & Geometric Topology

On diffeomorphisms over surfaces trivially embedded in the 4–sphere

Susumu Hirose

Full-text: Open access

Abstract

A surface in the 4–sphere is trivially embedded, if it bounds a 3–dimensional handle body in the 4–sphere. For a surface trivially embedded in the 4–sphere, a diffeomorphism over this surface is extensible if and only if this preserves the Rokhlin quadratic form of this embedded surface.

Article information

Source
Algebr. Geom. Topol., Volume 2, Number 2 (2002), 791-824.

Dates
Received: 6 March 2002
Accepted: 4 September 2002
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882742

Digital Object Identifier
doi:10.2140/agt.2002.2.791

Mathematical Reviews number (MathSciNet)
MR1928177

Zentralblatt MATH identifier
1022.57016

Subjects
Primary: 57N10: Topology of general 3-manifolds [See also 57Mxx]
Secondary: 57N05: Topology of $E^2$ , 2-manifolds 20F38: Other groups related to topology or analysis

Keywords
knotted surface mapping class group spin mapping class group

Citation

Hirose, Susumu. On diffeomorphisms over surfaces trivially embedded in the 4–sphere. Algebr. Geom. Topol. 2 (2002), no. 2, 791--824. doi:10.2140/agt.2002.2.791. https://projecteuclid.org/euclid.agt/1513882742


Export citation

References

  • J S Birman, H Hilden, On the mapping class group of closed surface as covering spaces, from: “Advances in the theory of Riemann surfaces" Ann. of Math. Studies 66(1971) 81–115
  • J Dieudonné, La gémmetrie des groupes classiques, (3-rd edn.), Ergebnisse der Math. u.i. Grundz. 5, Springer, 1971
  • J L Harer, Stability of the homology of the moduli spaces of Riemann surfaces with spin structure, Math. Ann. 287(1990) 323–334
  • J L Harer, The rational Picard group of the moduli space of Riemann surfaces with spin structure, Contemp. Math. 150(1993) 107–136
  • S Hirose, On diffeomorphisms over $T^2$-knot, Proc. of A.M.S. 119(1993) 1009–1018
  • Z Iwase, Dehn surgery along a torus $T^2$-knot. II, Japan. J. Math. 16(1990) 171–196
  • D Johnson, The structure of the Torelli Group I: A finite set of generators for ${\cal I}$, Annals of Math. 118(1983) 423–442
  • D Johnson, The structure of the Torelli Group III: The abelianization of ${\cal I}$, Topology 24(1985) 127–144
  • W Magnus, A Karras, D Solitar, Combinatorial Group Theory, Dover 1975
  • J M Montesinos, On twins in the four-sphere I, Quart. J. Math. Oxford (2) 34(1983) 171–199