Algebraic & Geometric Topology

The product formula for Lusternik–Schnirelmann category

Joseph Roitberg

Full-text: Open access

Abstract

If C=Cϕ, denotes the mapping cone of an essential phantom map ϕ from the suspension of the Eilenberg–Mac Lane complex K=K(,5), to the 4–sphere S=S4, we derive the following properties: (1) The LS category of the product of C with any n–sphere Sn is equal to 3; (2) The LS category of the product of C with itself is equal to 3, hence is strictly less than twice the LS category of C. These properties came to light in the course of an unsuccessful attempt to find, for each positive integer m, an example of a pair of 1–connected CW–complexes of finite type in the same Mislin (localization) genus with LS categories m and 2m. If ϕ is such that its p–localizations are inessential for all primes p, then by the main result of [J. Roitberg, The Lusternik–Schnirelmann category of certain infinite CW–complexes, Topology 39 (2000), 95–101], the pair C=SΣ2K,C provides such an example in the case m=1.

Article information

Source
Algebr. Geom. Topol., Volume 1, Number 1 (2001), 491-502.

Dates
Received: 26 October 2000
Revised: 7 May 2001
Accepted: 17 August 2001
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882605

Digital Object Identifier
doi:10.2140/agt.2001.1.491

Mathematical Reviews number (MathSciNet)
MR1852769

Zentralblatt MATH identifier
0976.55002

Subjects
Primary: 55M30: Ljusternik-Schnirelman (Lyusternik-Shnirelʹman) category of a space

Keywords
phantom map Mislin (localization) genus Lusternik–Schnirelmann category Hopf invariant cuplength

Citation

Roitberg, Joseph. The product formula for Lusternik–Schnirelmann category. Algebr. Geom. Topol. 1 (2001), no. 1, 491--502. doi:10.2140/agt.2001.1.491. https://projecteuclid.org/euclid.agt/1513882605


Export citation

References

  • O. Cornea, Lusternik-Schnirelmann-categorical sections, Annales Scientifiques de l'École Normale Supérieure, 4$^e$ Série, 28 (1995), 689-704.
  • Y. Félix, S. Halperin and J.-M. Lemaire, The rational LS category of products and of Poincare duality complexes, Topology 37 (1998), 749-756.
  • Y. Félix, S. Halperin and J.-C. Thomas, Lusternik-Schnirelmann category of skeleta. Preprint.
  • R.H. Fox, On the Lusternik-Schnirelmann category, Annals of Mathematics 42 (1941), 333-370.
  • T. Ganea and P. J. Hilton, On the decomposition of spaces in Cartesian products and unions, Proceedings Cambridge Philosophical Society 55 (1959), 248-256.
  • J. Harper, Category and products. Preprint.
  • N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bulletin London Mathematical Society 30 (1998), 623-634.
  • N. Iwase, $A_\infty$ method in Lusternik-Schnirelmann category. Preprint.
  • J. Roitberg, Computing homotopy classes of phantom maps. CRM Proceedings and Lecture Notes, vol. 6 (1994), 141-168.
  • J. Roitberg, The Lusternik-Schnirelmann category of certain infinite CW-complexes, Topology 39 (2000), 95-101.
  • D. Stanley, Spaces with Lusternik-Schnirelmann category $n$ and cone length $n+1$, Topology 39 (2000), 985-1019.
  • D. Stanley, On the Lusternik-Schnirelmann category of maps. Preprint.
  • L. Vandembroucq, Suspension des fibrations de Ganea et invariant de Hopf, Thèse, Université de Lille (1998).
  • A. Zabrodsky, On phantom maps and a theorem of H. Miller, Israel Journal of Mathematics 58 (1957), 129-143.