Algebraic & Geometric Topology

Foldable cubical complexes of nonpositive curvature

Xiangdong Xie

Full-text: Open access

Abstract

We study finite foldable cubical complexes of nonpositive curvature (in the sense of A D Alexandrov). We show that such a complex X admits a graph of spaces decomposition. It is also shown that when dimX=3, X contains a closed rank one geodesic in the 1–skeleton unless the universal cover of X is isometric to the product of two CAT(0) cubical complexes.

Article information

Source
Algebr. Geom. Topol., Volume 4, Number 1 (2004), 603-622.

Dates
Received: 19 September 2003
Revised: 14 May 2004
Accepted: 2 August 2004
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882490

Digital Object Identifier
doi:10.2140/agt.2004.4.603

Mathematical Reviews number (MathSciNet)
MR2100674

Zentralblatt MATH identifier
1055.20035

Subjects
Primary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx] 20F67: Hyperbolic groups and nonpositively curved groups
Secondary: 53C20: Global Riemannian geometry, including pinching [See also 31C12, 58B20]

Keywords
rank one geodesic cubical complex nonpositive curvature

Citation

Xie, Xiangdong. Foldable cubical complexes of nonpositive curvature. Algebr. Geom. Topol. 4 (2004), no. 1, 603--622. doi:10.2140/agt.2004.4.603. https://projecteuclid.org/euclid.agt/1513882490


Export citation

References

  • W. Ballmann, Lectures on spaces of nonpositive curvature, volume 25 of DMV seminar. Birkhaüser, Basel, 1995.
  • W. Ballmann, M. Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math. No. 82 (1995) 169–209 (1996).
  • W. Ballmann, M. Brin, Rank rigidity of Euclidean polyhedra, Amer. J. Math. 122 (2000) 873–885.
  • W. Ballmann, S. Buyalo, Periodic rank one geodesics in Hadamard spaces, preprint 2002.
  • W. Ballmann, J. Swiatkowski, On Groups acting on Nonpositively Curved Cubical Complexes, Enseign. Math. 45 (1999) 51–81.
  • M. Bridson, Geodesics and curvature in metric simplicial complexes, Group theory from a geometrical viewpoint (E.Ghys, A. Haefliger & A. Verjovsky, eds.) Proceedings ICTP, Trieste, World Scientific, 1991.
  • M. Bridson, A. Haefliger, Metric spaces of nonpositive curvature, Grundlehren 319, Springer-Verlag, Berlin (1999).
  • M. Bridson, D. Wise, $\mathcal{V}H$ complexes, towers and subgroups of $F\times F$, Math. Proc. Cambridge Philos. Soc. 126 (1999) 481–497.
  • R. Charney, The Tits conjecture for locally reducible Artin groups, Internat. J. Algebra Comput. 10 (2000) 783-797.
  • M. Davis, Nonpositive curvature and reflection groups, Handbook of geometric topology, 373–422, North-Holland, Amsterdam, 2002.
  • M. Davis, T. Januszkiewicz, R. Scott, Nonpositive curvature of blow-ups, Selecta Math. 4 (1998) 491–547.
  • G. Moussong, Hyperbolic Coxeter groups, Ph.D. thesis, The Ohio State University, 1988.
  • I. Pays, A. Valette, Sous-groupes libres dans les groupes d'automorphismes d'arbres, Enseign. Math. 37 (1991) 151–174.
  • P. Scott, T. Wall, Topological methods in group theory, Homological group theory (Proc. Sympos. Durham, 1977) pp. 137–203, LMS Lecture Note Ser. 36, CUP, Cambridge-New York, 1979.
  • D. Wise, Non-positively curved squared complexes, aperiodic tilings, and non-residually finite groups, Ph.D. Thesis, Princeton University, 1996.