Algebraic & Geometric Topology

The boundary-Wecken classification of surfaces

Robert F Brown and Michael R Kelly

Full-text: Open access

Abstract

Let X be a compact 2-manifold with nonempty boundary X and let f:(X,X)(X,X) be a boundary-preserving map. Denote by MF[f] the minimum number of fixed point among all boundary-preserving maps that are homotopic through boundary-preserving maps to f. The relative Nielsen number N(f) is the sum of the number of essential fixed point classes of the restriction f̄:XX and the number of essential fixed point classes of f that do not contain essential fixed point classes of f̄. We prove that if X is the Möbius band with one (open) disc removed, then MF[f]N(f)1 for all maps f:(X,X)(X,X). This result is the final step in the boundary-Wecken classification of surfaces, which is as follows. If X is the disc, annulus or Möbius band, then X is boundary-Wecken, that is, MF[f]=N(f) for all boundary-preserving maps. If X is the disc with two discs removed or the Möbius band with one disc removed, then X is not boundary-Wecken, but MF[f]N(f)1. All other surfaces are totally non-boundary-Wecken, that is, given an integer k1, there is a map fk:(X,X)(X,X) such that MF[fk]N(fk)k.

Article information

Source
Algebr. Geom. Topol., Volume 4, Number 1 (2004), 49-71.

Dates
Received: 21 November 2002
Revised: 15 October 2003
Accepted: 26 November 2003
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882466

Digital Object Identifier
doi:10.2140/agt.2004.4.49

Mathematical Reviews number (MathSciNet)
MR2031912

Zentralblatt MATH identifier
1053.55002

Subjects
Primary: 55M20: Fixed points and coincidences [See also 54H25]
Secondary: 54H25: Fixed-point and coincidence theorems [See also 47H10, 55M20] 57N05: Topology of $E^2$ , 2-manifolds

Keywords
boundary-Wecken relative Nielsen number punctured Möbius band boundary-preserving map

Citation

Brown, Robert F; Kelly, Michael R. The boundary-Wecken classification of surfaces. Algebr. Geom. Topol. 4 (2004), no. 1, 49--71. doi:10.2140/agt.2004.4.49. https://projecteuclid.org/euclid.agt/1513882466


Export citation

References

  • Brouwer, L.: Über die Minimalzahl der Fixpunkte bei den Klassen von eindeutigen stetigen Transformationen der Ringfläschen, Math. Ann. 82, 94–96 (1921).
  • Brown, R., Sanderson B.: Fixed points of boundary-preserving maps of surfaces, Pacific J. Math. 158, 243–264 (1993).
  • Buoncristiano, S., Rourke, C., Sanderson, B.: A Geometric Approach to Homology Theory, Cambridge Univ. Press, 1976.
  • Heath, P.: A Nielsen type number for fibre preserving maps, Top. Appl. 53, 19–35 (1993).
  • Heath. P., Keppelmann, E., Wong, P.: Addition formulae for Nielsen numbers and the Nielsen type numbers of fiber preserving maps, Top. Appl. 67, 133–157 (1995).
  • Jiang, B.:, Commutativity and Wecken properties for fixed points on surfaces and 3-manifolds, Top. Appl. 53, 221–228 (1993).
  • Jiang, B., Guo, J.: Fixed points of surface diffeomorphisms Pacific J. Math. 160, 67–89 (1993).
  • Jiang B.: The Wecken property of the projective plane, in `Nielsen Theory and Reidemeister Torsion', Banach Center Publications 49, 223–225 (1999).
  • Kelly, M.: Minimizing the number of fixed points for self-maps of compact surfaces, Pacific J. Math. 126, 81–123 (1987).
  • Kelly, M.: The relative Nielsen number and boundary-preserving surface maps, Pacific J. Math. 161, 139–153 (1993).
  • Kelly, M.: Fixed points of boundary-preserving maps on punctured projective planes, Top. Appl. 124, 145–157 (2002).
  • Nolan, J.: Fixed points of boundary-preserving maps of punctured discs, Top. Appl. 73, 57–84 (1996).
  • Schirmer, H.: A relative Nielsen number, Pacific J. Math. 122, 459–472 (1986).
  • Skora, R.: The degree of a map between surfaces, Math. Ann. 276, 415–423 (1987).
  • Wecken, F.: Fixpunktklassen, III, Math. Ann. 118, 544–577 (1942).