Algebraic & Geometric Topology

Odd primary homotopy decompositions of gauge groups

Stephen D Theriault

Full-text: Open access

Abstract

We construct p–local decompositions of certain gauge groups when p is an odd prime. Specifically, we decompose SU(n), Sp(n) and Spin(n)–gauge groups over simply connected 4–manifolds and U(n)–gauge groups over compact, orientable Riemann surfaces, given certain restrictions on n that depend on p.

Article information

Source
Algebr. Geom. Topol., Volume 10, Number 1 (2010), 535-564.

Dates
Received: 23 July 2009
Revised: 10 December 2009
Accepted: 24 December 2009
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882322

Digital Object Identifier
doi:10.2140/agt.2010.10.535

Mathematical Reviews number (MathSciNet)
MR2602840

Zentralblatt MATH identifier
1196.55009

Subjects
Primary: 54C35: Function spaces [See also 46Exx, 58D15] 55P35: Loop spaces 55R10: Fiber bundles

Keywords
gauge group $p$–local decomposition

Citation

Theriault, Stephen D. Odd primary homotopy decompositions of gauge groups. Algebr. Geom. Topol. 10 (2010), no. 1, 535--564. doi:10.2140/agt.2010.10.535. https://projecteuclid.org/euclid.agt/1513882322


Export citation

References

  • M F Atiyah, R Bott, The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523–615
  • A Borel, F Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958) 458–538
  • R Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960) 249–256
  • F R Cohen, J A Neisendorfer, A construction of $p$–local $H$-spaces, from: “Algebraic topology, Aarhus 1982 (Aarhus, 1982)”, (I Madsen, B Oliver, editors), Lecture Notes in Math. 1051, Springer, Berlin (1984) 351–359
  • R L Cohen, R J Milgram, The homotopy type of gauge-theoretic moduli spaces, from: “Algebraic topology and its applications”, (G E Carlsson, R L Cohen, W C Hsiang, J D S Jones, editors), Math. Sci. Res. Inst. Publ. 27, Springer, New York (1994) 15–55
  • M C Crabb, Fibrewise homology, Glasg. Math. J. 43 (2001) 199–208
  • M C Crabb, W A Sutherland, Counting homotopy types of gauge groups, Proc. London Math. Soc. $(3)$ 81 (2000) 747–768
  • S K Donaldson, Connections, cohomology and the intersection forms of $4$–manifolds, J. Differential Geom. 24 (1986) 275–341
  • Y Félix, J Oprea, Rational homotopy of gauge groups, Proc. Amer. Math. Soc. 137 (2009) 1519–1527
  • E M Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, Ann. Math. $(2)$ 101 (1975) 510–520
  • D H Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972) 23–50
  • B Gray, Homotopy commutativity and the $EHP$ sequence, from: “Algebraic topology (Evanston, IL, 1988)”, (M Mahowald, S Priddy, editors), Contemp. Math. 96, Amer. Math. Soc. (1989) 181–188
  • J Grbić, S D Theriault, Odd primary self-maps of low rank Lie groups, Canad. J. Math 62 (2010) 284–304
  • H Hamanaka, A Kono, Unstable $K\sp 1$–group and homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006) 149–155
  • B Harris, On the homotopy groups of the classical groups, Ann. of Math. $(2)$ 74 (1961) 407–413
  • P Hilton, G Mislin, J Roitberg, Localization of nilpotent groups and spaces, North-Holland Math. Studies 15, Notas de Matemática 55, North-Holland Publishing Co., Amsterdam (1975)
  • I M James, The topology of Stiefel manifolds, London Math. Soc. Lecture Note Ser. 24, Cambridge Univ. Press (1976)
  • D Kishimoto, A Kono, Note on mod $p$ decompositions of gauge groups, Proc. Japan Acad. Ser. A 86 (2010) 15–17
  • A Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991) 295–297
  • A Kono, S Tsukuda, A remark on the homotopy type of certain gauge groups, J. Math. Kyoto Univ. 36 (1996) 115–121
  • G E Lang, Jr, The evaluation map and EHP sequences, Pacific J. Math. 44 (1973) 201–210
  • G Masbaum, On the cohomology of the classifying space of the gauge group over some $4$–complexes, Bull. Soc. Math. France 119 (1991) 1–31
  • M Mimura, G Nishida, H Toda, ${\rm Mod}\ p$ decomposition of compact Lie groups, Publ. Res. Inst. Math. Sci. 13 (1977) 627–680
  • M Mimura, H Toda, Cohomology operations and homotopy of compact Lie groups. I, Topology 9 (1970) 317–336
  • W A Sutherland, Function spaces related to gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992) 185–190
  • S Terzić, The rational topology of gauge groups and of spaces of connections, Compos. Math. 141 (2005) 262–270
  • S D Theriault, The $H$–structure of low-rank torsion free $H$-spaces, Q. J. Math. 56 (2005) 403–415
  • S D Theriault, The odd primary $H$–structure of low rank Lie groups and its application to exponents, Trans. Amer. Math. Soc. 359 (2007) 4511–4535
  • H Toda, A topological proof of theorems of Bott and Borel–Hirzebruch for homotopy groups of unitary groups, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. 32 (1959) 103–119
  • H Toda, On iterated suspensions. I, II, J. Math. Kyoto Univ. 5 (1966) 87–142, 209–250