Algebraic & Geometric Topology

Nerves and classifying spaces for bicategories

Pilar Carrasco, Antonio M Cegarra, and Antonio R Garzón

Full-text: Open access

Abstract

This paper explores the relationship amongst the various simplicial and pseudosimplicial objects characteristically associated to any bicategory C. It proves the fact that the geometric realizations of all of these possible candidate “nerves of C” are homotopy equivalent. Any one of these realizations could therefore be taken as the classifying space BC of the bicategory. Its other major result proves a direct extension of Thomason’s “Homotopy Colimit Theorem” to bicategories: When the homotopy colimit construction is carried out on a diagram of spaces obtained by applying the classifying space functor to a diagram of bicategories, the resulting space has the homotopy type of a certain bicategory, called the “Grothendieck construction on the diagram”. Our results provide coherence for all reasonable extensions to bicategories of Quillen’s definition of the “classifying space” of a category as the geometric realization of the category’s Grothendieck nerve, and they are applied to monoidal (tensor) categories through the elemental “delooping” construction.

Article information

Source
Algebr. Geom. Topol., Volume 10, Number 1 (2010), 219-274.

Dates
Received: 30 March 2009
Accepted: 8 November 2009
First available in Project Euclid: 21 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513882312

Digital Object Identifier
doi:10.2140/agt.2010.10.219

Mathematical Reviews number (MathSciNet)
MR2602835

Zentralblatt MATH identifier
1183.18005

Subjects
Primary: 18D05: Double categories, 2-categories, bicategories and generalizations
Secondary: 55U40: Topological categories, foundations of homotopy theory

Keywords
category bicategory monoidal category pseudosimplicial category nerve classifying space homotopy type simplicial set

Citation

Carrasco, Pilar; Cegarra, Antonio M; Garzón, Antonio R. Nerves and classifying spaces for bicategories. Algebr. Geom. Topol. 10 (2010), no. 1, 219--274. doi:10.2140/agt.2010.10.219. https://projecteuclid.org/euclid.agt/1513882312


Export citation

References

  • M Artin, B Mazur, On the van Kampen theorem, Topology 5 (1966) 179–189
  • I Baković, Grothendieck construction for bicategories, Preprint, Available at http://www.irb.hr/korisnici/ibakovic/sgc.pdf
  • J Bénabou, Introduction to bicategories, from: “Reports of the Midwest Category Seminar”, Springer, Berlin (1967) 1–77
  • A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer, Berlin (1972)
  • L Breen, Théorie de Schreier supérieure, Ann. Sci. École Norm. Sup. $(4)$ 25 (1992) 465–514
  • M Bullejos, A M Cegarra, On the geometry of $2$–categories and their classifying spaces, $K$–Theory 29 (2003) 211–229
  • M Bullejos, A M Cegarra, Classifying spaces for monoidal categories through geometric nerves, Canad. Math. Bull. 47 (2004) 321–331
  • P Carrasco, A M Cegarra, (Braided) tensor structures on homotopy groupoids and nerves of (braided) categorical groups, Comm. Algebra 24 (1996) 3995–4058
  • P Carrasco, A M Cegarra, Schreier theory for central extensions of categorical groups, Comm. Algebra 24 (1996) 4059–4112
  • A M Cegarra, M Bullejos, A R Garzón, Higher-dimensional obstruction theory in algebraic categories, J. Pure Appl. Algebra 49 (1987) 43–102
  • A M Cegarra, A R Garzón, Homotopy classification of categorical torsors, Appl. Categ. Structures 9 (2001) 465–496
  • A M Cegarra, E Khmaladze, Homotopy classification of graded Picard categories, Adv. Math. 213 (2007) 644–686
  • A M Cegarra, J Remedios, The relationship between the diagonal and the bar constructions on a bisimplicial set, Topology Appl. 153 (2005) 21–51
  • A M Cegarra, J Remedios, The behaviour of the $\wwbar W$–construction on the homotopy theory of bisimplicial sets, Manuscripta Math. 124 (2007) 427–457
  • J W Duskin, Simplicial matrices and the nerves of weak $n$–categories. I. Nerves of bicategories, Theory Appl. Categ. 9 (2001) 198–308 CT2000 Conference (Como)
  • Z Fiedorowicz, Classifying spaces of topological monoids and categories, Amer. J. Math. 106 (1984) 301–350
  • R Garner, N Gurski, The low-dimensional structures that tricategories form, to appear in Mathematical Proc. Camb. Phil. Soc.
  • P G Glenn, Realization of cohomology classes in arbitrary exact categories, J. Pure Appl. Algebra 25 (1982) 33–105
  • P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Math. 174, Birkhäuser Verlag, Basel (1999)
  • R Gordon, A J Power, R Street, Coherence for tricategories, Mem. Amer. Math. Soc. 117 (1995) vi+81
  • A Grothendieck, Catégories fibrées et déscente, from: “Revêtements étales et groupe fondamental”, Lecture Notes in Math. 224, Springer, Berlin (1971) 145–194 Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1)
  • N Gurski, An algebraic theory of tricategory, PhD thesis, University of Chicago (2007)
  • N Gurski, Nerves of bicategories as stratified simplicial sets, J. Pure Appl. Algebra 213 (2009) 927–946
  • V A Hinich, V V Schechtman, Geometry of a category of complexes and algebraic $K$–theory, Duke Math. J. 52 (1985) 399–430
  • J F Jardine, Supercoherence, J. Pure Appl. Algebra 75 (1991) 103–194
  • A Joyal, R Street, Braided tensor categories, Adv. Math. 102 (1993) 20–78
  • M M Kapranov, V A Voevodsky, $2$–categories and Zamolodchikov tetrahedra equations, from: “Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991)”, Proc. Sympos. Pure Math. 56, Amer. Math. Soc. (1994) 177–259
  • S Lack, ICONS
  • S Lack, S Paoli, $2$–nerves for bicategories, $K$–Theory 38 (2008) 153–175
  • S Mac Lane, Categories for the working mathematician, second edition, Graduate Texts in Math. 5, Springer, New York (1998)
  • J P May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies 11, D Van Nostrand Co., Princeton-Toronto-London (1967)
  • J P May, The geometry of iterated loop spaces, Lectures Notes in Math. 271, Springer, Berlin (1972)
  • J P May, Pairings of categories and spectra, J. Pure Appl. Algebra 19 (1980) 299–346
  • I Moerdijk, J-A Svensson, Algebraic classification of equivariant homotopy $2$–types. I, J. Pure Appl. Algebra 89 (1993) 187–216
  • D Quillen, Higher algebraic $K$–theory. I, from: “Algebraic $K$–theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972)”, Lecture Notes in Math. 341, Springer, Berlin (1973) 85–147
  • G Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. (1968) 105–112
  • G Segal, Categories and cohomology theories, Topology 13 (1974) 293–312
  • C Simson, A closed model structure for $n$–categories, internal $hom$, $n$–staks and generalized Seifert–Van Kampen
  • R Street, Two constructions on lax functors, Cahiers Topologie Géom. Différentielle 13 (1972) 217–264
  • R Street, The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987) 283–335
  • R Street, Categorical structures, from: “Handbook of algebra, Vol. 1”, North-Holland, Amsterdam (1996) 529–577
  • Z Tamsamani, Sur des notions de $n$–catégorie et $n$-groupoï de non strictes via des ensembles multi-simpliciaux, $K$–Theory 16 (1999) 51–99
  • R W Thomason, Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979) 91–109
  • U Tillmann, Discrete models for the category of Riemann surfaces, Math. Proc. Cambridge Philos. Soc. 121 (1997) 39–49
  • U Tillmann, On the homotopy of the stable mapping class group, Invent. Math. 130 (1997) 257–275
  • K Worytkiewicz, K Hess, P E Parent, A Tonks, A model structure à la Thomason on 2-Cat, J. Pure Appl. Algebra 208 (2007) 205–236