Algebraic & Geometric Topology

Permutative categories, multicategories and algebraic $K$–theory

A D Elmendorf and M A Mandell

Full-text: Open access

Abstract

We show that the K–theory construction of our paper [Adv. Math 205 (2006) 163-228], which preserves multiplicative structure, extends to a symmetric monoidal closed bicomplete source category, with the multiplicative structure still preserved. The source category of [op cit], whose objects are permutative categories, maps fully and faithfully to the new source category, whose objects are (based) multicategories.

Article information

Source
Algebr. Geom. Topol., Volume 9, Number 4 (2009), 2391-2441.

Dates
Received: 9 March 2009
Revised: 1 September 2009
Accepted: 7 October 2009
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513797088

Digital Object Identifier
doi:10.2140/agt.2009.9.2391

Mathematical Reviews number (MathSciNet)
MR2558315

Zentralblatt MATH identifier
1205.19003

Subjects
Primary: 19D23: Symmetric monoidal categories [See also 18D10] 55U99: None of the above, but in this section
Secondary: 55P42: Stable homotopy theory, spectra 18D10: Monoidal categories (= multiplicative categories), symmetric monoidal categories, braided categories [See also 19D23] 18D50: Operads [See also 55P48]

Keywords
$K$–theory permutative category multicategory

Citation

Elmendorf, A D; Mandell, M A. Permutative categories, multicategories and algebraic $K$–theory. Algebr. Geom. Topol. 9 (2009), no. 4, 2391--2441. doi:10.2140/agt.2009.9.2391. https://projecteuclid.org/euclid.agt/1513797088


Export citation

References

  • M Barr, C Wells, Toposes, triples and theories, Repr. Theory Appl. Categ. (2005) x+288 pp. Corrected reprint of the 1985 original [MR0771116]
  • J M Boardman, R M Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. 347, Springer, Berlin (1973)
  • F Borceux, Handbook of categorical algebra. 2. Categories and structures, Encyclopedia of Math. and its Appl. 51, Cambridge Univ. Press (1994)
  • B Day, On closed categories of functors, from: “Reports of the Midwest Category Seminar, IV”, Lecture Notes in Math. 137, Springer, Berlin (1970) 1–38
  • G Dunn, $E\sb n$–monoidal categories and their group completions, J. Pure Appl. Algebra 95 (1994) 27–39
  • A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Math. Surveys and Monogr. 47, Amer. Math. Soc. (1997) With an appendix by M Cole
  • A D Elmendorf, M A Mandell, Rings, modules, and algebras in infinite loop space theory, Adv. Math. 205 (2006) 163–228
  • J Lambek, Deductive systems and categories. II. Standard constructions and closed categories, from: “Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One)”, Springer, Berlin (1969) 76–122
  • T Leinster, Higher operads, higher categories, London Math. Soc. Lecture Note Ser. 298, Cambridge Univ. Press (2004)
  • S MacLane, Categories for the working mathematician, Graduate Texts in Math. 5, Springer, New York (1971)
  • J P May, The geometry of iterated loop spaces, Lectures Notes in Math. 271, Springer, Berlin (1972)
  • J P May, R Thomason, The uniqueness of infinite loop space machines, Topology 17 (1978) 205–224
  • I Moerdijk, I Weiss, Dendroidal sets, Algebr. Geom. Topol. 7 (2007) 1441–1470