Algebraic & Geometric Topology

All exceptional surgeries on alternating knots are integral surgeries

Kazuhiro Ichihara

Full-text: Open access

Abstract

We show that all non-trivial exceptional surgeries on hyperbolic alternating knots in the 3–sphere are integral surgeries.

Article information

Source
Algebr. Geom. Topol., Volume 8, Number 4 (2008), 2161-2173.

Dates
Received: 17 August 2008
Revised: 5 October 2008
Accepted: 13 October 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796930

Digital Object Identifier
doi:10.2140/agt.2008.8.2161

Mathematical Reviews number (MathSciNet)
MR2460884

Zentralblatt MATH identifier
1158.57300

Subjects
Primary: 57M50: Geometric structures on low-dimensional manifolds

Keywords
exceptional surgery Seifert fibered surgery integral surgery alternating knot essential lamination alternating knot Montesinos knot

Citation

Ichihara, Kazuhiro. All exceptional surgeries on alternating knots are integral surgeries. Algebr. Geom. Topol. 8 (2008), no. 4, 2161--2173. doi:10.2140/agt.2008.8.2161. https://projecteuclid.org/euclid.agt/1513796930


Export citation

References

  • I Agol, Bounds on exceptional Dehn filling, Geom. Topol. 4 (2000) 431–449
  • I Agol, Bounds on exceptional Dehn filling II
  • S Boyer, X Zhang, Cyclic surgery and boundary slopes, from: “Geometric topology (Athens, GA, 1993)”, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI (1997) 62–79
  • M Brittenham, Exceptional Seifert-fibered spaces and Dehn surgery on $2$–bridge knots, Topology 37 (1998) 665–672
  • M Brittenham, Y-Q Wu, The classification of exceptional Dehn surgeries on 2–bridge knots, Comm. Anal. Geom. 9 (2001) 97–113
  • C Delman, Essential laminations and Dehn surgery on $2$–bridge knots, Topology Appl. 63 (1995) 201–221
  • C Delman, Constructing essential laminations which survive all Dehn surgeries, preprint
  • C Delman, R Roberts, Alternating knots satisfy Strong Property P, Comment. Math. Helv. 74 (1999) 376–397
  • M Eudave-Muñoz, Non-hyperbolic manifolds obtained by Dehn surgery on hyperbolic knots, from: “Geometric topology (Athens, GA, 1993)”, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI (1997) 35–61
  • D Gabai, Problems in foliations and laminations, from: “Geometric topology (Athens, GA, 1993)”, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI (1997) 1–33
  • D Gabai, U Oertel, Essential laminations in $3$–manifolds, Ann. of Math. $(2)$ 130 (1989) 41–73
  • F González-Acuña, H Short, Knot surgery and primeness, Math. Proc. Cambridge Philos. Soc. 99 (1986) 89–102
  • C M Gordon, J Luecke, Non-integral toroidal Dehn surgeries, Comm. Anal. Geom. 12 (2004) 417–485
  • A Hatcher, U Oertel, Boundary slopes for Montesinos knots, Topology 28 (1989) 453–480
  • A Hatcher, W Thurston, Incompressible surfaces in $2$–bridge knot complements, Invent. Math. 79 (1985) 225–246
  • K Ichihara, Integral non-hyperbolike surgeries, J. Knot Theory Ramifications 17 (2008) 257–261
  • K Ichihara, I D Jong, S Mizushima, Seifert fibered surgeries on alternating Montesinos knots, in preparation
  • R Kirby (editor), Problems in low-dimensional topology, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, RI (1997)
  • M Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243–282
  • M Lackenby, R Meyerhoff, The maximal number of exceptional Dehn surgeries
  • W B R Lickorish, M B Thistlethwaite, Some links with nontrivial polynomials and their crossing-numbers, Comment. Math. Helv. 63 (1988) 527–539
  • W Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1984) 37–44
  • W Menasco, M B Thistlethwaite, Surfaces with boundary in alternating knot exteriors, J. Reine Angew. Math. 426 (1992) 47–65
  • R M Patton, Incompressible punctured tori in the complements of alternating knots, Math. Ann. 301 (1995) 1–22
  • G Perelman, The entropy formula for the Ricci flow and its geometric applications
  • G Perelman, Ricci flow with surgery on three-manifolds
  • G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds
  • D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Berkeley, CA (1976)
  • P Scott, The geometries of $3$–manifolds, Bull. London Math. Soc. 15 (1983) 401–487
  • M B Thistlethwaite, On the algebraic part of an alternating link, Pacific J. Math. 151 (1991) 317–333
  • W P Thurston, The geometry and topology of three-manifolds (1980) Available at \setbox0\makeatletter\@url http://msri.org/publications/books/gt3m {\unhbox0
  • W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. $($N.S.$)$ 6 (1982) 357–381
  • Y-Q Wu, Dehn surgery on arborescent knots, J. Differential Geom. 43 (1996) 171–197
  • Y-Q Wu, Dehn surgery on arborescent knots and links–-a survey, Chaos Solitons Fractals 9 (1998) 671–679
  • Y-Q Wu, The classification of toroidal Dehn surgeries on Montesinos knots, to appear in Topology
  • Y-Q Wu, Exceptional Dehn surgery on large arborescent knots