Algebraic & Geometric Topology

Topological nonrealization results via the Goodwillie tower approach to iterated loopspace homology

Nicholas Kuhn

Full-text: Open access

Abstract

We prove a strengthened version of a theorem of Lionel Schwartz [Invent. Math. 134 (1998) 211–227] that says that certain modules over the Steenrod algebra cannot be the mod 2 cohomology of a space. What is most interesting is our method, which replaces his iterated use of the Eilenberg–Moore spectral sequence by a single use of the spectral sequence converging to H(ΩnX;2) obtained from the Goodwillie tower for ΣΩnX. Much of the paper develops basic properties of this spectral sequence.

Article information

Source
Algebr. Geom. Topol., Volume 8, Number 4 (2008), 2109-2129.

Dates
Received: 8 July 2008
Revised: 10 October 2008
Accepted: 13 October 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796927

Digital Object Identifier
doi:10.2140/agt.2008.8.2109

Mathematical Reviews number (MathSciNet)
MR2460881

Zentralblatt MATH identifier
1169.55011

Subjects
Primary: 55S10: Steenrod algebra
Secondary: 55T20: Eilenberg-Moore spectral sequences [See also 57T35] 55S12: Dyer-Lashof operations

Keywords
loopspace homology Goodwillie towers

Citation

Kuhn, Nicholas. Topological nonrealization results via the Goodwillie tower approach to iterated loopspace homology. Algebr. Geom. Topol. 8 (2008), no. 4, 2109--2129. doi:10.2140/agt.2008.8.2109. https://projecteuclid.org/euclid.agt/1513796927


Export citation

References

  • J F Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. $(2)$ 72 (1960) 20–104
  • S T Ahearn, N J Kuhn, Product and other fine structure in polynomial resolutions of mapping spaces, Algebr. Geom. Topol. 2 (2002) 591–647
  • G Arone, A generalization of Snaith-type filtration, Trans. Amer. Math. Soc. 351 (1999) 1123–1150
  • R R Bruner, J P May, J E McClure, M Steinberger, $H\sb \infty $ ring spectra and their applications, Lecture Notes in Math. 1176, Springer, Berlin (1986)
  • F R Cohen, T J Lada, J P May, The homology of iterated loop spaces, Lecture Notes in Math. 533, Springer, Berlin (1976)
  • D Davis, moderator, Algebraic topology discussion list Available at \setbox0\makeatletter\@url http://www.lehigh.edu/~dmd1/algtop.html {\unhbox0
  • F-X Dehon, G Gaudens, Espaces profinis et problèmes de réalisabilité, Algebr. Geom. Topol. 3 (2003) 399–433
  • E E Floyd, The number of cells in a non-bounding manifold, Ann. of Math. $(2)$ 98 (1973) 210–225
  • G Gaudens, Bocksteins and the nilpotent filtration on the cohomology of spaces, from: “Proceedings of the School and Conference in Algebraic Topology”, Geom. Topol. Monogr. 11, Geom. Topol. Publ., Coventry (2007) 59–79
  • T G Goodwillie, Calculus. I. The first derivative of pseudoisotopy theory, $K$–Theory 4 (1990) 1–27
  • T G Goodwillie, Calculus. II. Analytic functors, $K$–Theory 5 (1991/92) 295–332
  • T G Goodwillie, Calculus. III. Taylor series, Geom. Topol. 7 (2003) 645–711
  • N J Kuhn, On topologically realizing modules over the Steenrod algebra, Ann. of Math. $(2)$ 141 (1995) 321–347
  • N J Kuhn, M Slack, F Williams, Hopf constructions and higher projective planes for iterated loop spaces, Trans. Amer. Math. Soc. 347 (1995) 1201–1238
  • J P May, The geometry of iterated loop spaces, Lectures Notes in Math. 271, Springer, Berlin (1972)
  • R J Milgram, Unstable homotopy from the stable point of view, Lecture Notes in Math. 368, Springer, Berlin (1974)
  • L Schwartz, À propos de la conjecture de non-réalisation due à N. Kuhn, Invent. Math. 134 (1998) 211–227
  • L Schwartz, La filtration de Krull de la catégorie $\mathcal U$ et la cohomologie des espaces, Algebr. Geom. Topol. 1 (2001) 519–548
  • V A Smirnov, Simplicial and operad methods in algebraic topology, Transl. of Math. Monogr. 198, Amer. Math. Soc. (2001) Translated from the Russian manuscript by G L. Rybnikov