Algebraic & Geometric Topology

Small exotic 4–manifolds

Anar Akhmedov

Full-text: Open access

Abstract

In this article, we construct the first example of a simply-connected minimal symplectic 4–manifold that is homeomorphic but not diffeomorphic to 32#7¯2. We also construct the first exotic minimal symplectic 2#5¯2.

Article information

Source
Algebr. Geom. Topol., Volume 8, Number 3 (2008), 1781-1794.

Dates
Received: 12 March 2007
Revised: 7 July 2008
Accepted: 5 September 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796906

Digital Object Identifier
doi:10.2140/agt.2008.8.1781

Mathematical Reviews number (MathSciNet)
MR2448872

Zentralblatt MATH identifier
1160.57017

Subjects
Primary: 57N65: Algebraic topology of manifolds 57N13: Topology of $E^4$ , $4$-manifolds [See also 14Jxx, 32Jxx]
Secondary: 57M50: Geometric structures on low-dimensional manifolds

Keywords
4–manifolds exotic smooth structures symplectic 4–manifolds fiber sum Seiberg–Witten invariants

Citation

Akhmedov, Anar. Small exotic 4–manifolds. Algebr. Geom. Topol. 8 (2008), no. 3, 1781--1794. doi:10.2140/agt.2008.8.1781. https://projecteuclid.org/euclid.agt/1513796906


Export citation

References

  • A Akhmedov, Construction of symplectic cohomology $S^{2}\times S^{2}$, Gökova Geometry-Topology Proc 14 (2007) 36–48
  • G Burde, H Zieschang, Knots, de Gruyter Studies in Mathematics 5, Walter de Gruyter & Co., Berlin (1985)
  • R Fintushel, R J Stern, Rational blowdowns of smooth $4$-manifolds, J. Differential Geom. 46 (1997) 181–235
  • R Fintushel, R J Stern, Families of simply connected 4–manifolds with the same Seiberg–Witten invariants, Topology 43 (2004) 1449–1467
  • R Fintushel, R J Stern, Double node neighborhoods and families of simply connected 4–manifolds with $b\sp +=1$, J. Amer. Math. Soc. 19 (2006) 171–180
  • M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357–453
  • R E Gompf, A new construction of symplectic manifolds, Ann. of Math. $(2)$ 142 (1995) 527–595
  • M J D Hamilton, D Kotschick, Minimality and irreducibility of symplectic four-manifolds, Int. Math. Res. Not. (2006) Art. ID 35032, 13
  • D Kotschick, The Seiberg–Witten invariants of symplectic four-manifolds (after C H Taubes), Astérisque (1997) Exp. No. 812, 4, 195–220 \qua Séminaire Bourbaki, Vol. 1995/96
  • T-J Li, S T Yau, Embedded surfaces and Kodaira Dimension\qua preprint
  • Y Matsumoto, Lefschetz fibrations of genus two–-a topological approach, from: “Topology and Teichmüller spaces (Katinkulta, 1995)”, World Sci. Publ., River Edge, NJ (1996) 123–148
  • J D McCarthy, J G Wolfson, Symplectic normal connect sum, Topology 33 (1994) 729–764
  • B Ozbagci, A I Stipsicz, Noncomplex smooth $4$–manifolds with genus–$2$ Lefschetz fibrations, Proc. Amer. Math. Soc. 128 (2000) 3125–3128
  • J Park, Seiberg–Witten invariants of generalised rational blow-downs, Bull. Austral. Math. Soc. 56 (1997) 363–384
  • J Park, Simply connected symplectic 4–manifolds with $b\sp +\sb 2=1$ and $c\sp 2\sb 1=2$, Invent. Math. 159 (2005) 657–667
  • J Park, Exotic smooth structures on $3\mathbb C{\rm P}\sp 2\sharp 8\overline{{\mathbb C}{\rm P}}{}\sp 2$, Bull. Lond. Math. Soc. 39 (2007) 95–102
  • J Park, A I Stipsicz, Z Szabó, Exotic smooth structures on $\mathbb{CP}\sp 2\#5\overline{\mathbb{CP}\sp 2}$, Math. Res. Lett. 12 (2005) 701–712
  • A I Stipsicz, Z Szabó, An exotic smooth structure on $\mathbb C\mathbb P\sp 2\#6\overline{\mathbb C\mathbb P\sp 2}$, Geom. Topol. 9 (2005) 813–832
  • A I Stipsicz, Z Szabó, Small exotic 4–manifolds with $b\sp +\sb 2=3$, Bull. London Math. Soc. 38 (2006) 501–506
  • C H Taubes, The Seiberg–Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994) 809–822
  • M Usher, Minimality and symplectic sums, Int. Math. Res. Not. (2006) Art. ID 49857, 17
  • M Usher, Kodaira dimension and Symplectic Sums\qua to appear in Commentarii Mathematici Helvetici
  • E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769–796