Algebraic & Geometric Topology

Fundamental groups of topological stacks with the slice property

Behrang Noohi

Full-text: Open access

Abstract

The main result of the paper is a formula for the fundamental group of the coarse moduli space of a topological stack. As an application, we find simple formulas for the fundamental group of the coarse quotient of a group action on a topological space in terms of the fixed point data. In particular, we recover, and vastly generalize, results of Armstrong, Bass, Higgins and Taylor and Rhodes.

Article information

Source
Algebr. Geom. Topol., Volume 8, Number 3 (2008), 1333-1370.

Dates
Received: 11 January 2008
Revised: 14 June 2008
Accepted: 15 June 2008
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796889

Digital Object Identifier
doi:10.2140/agt.2008.8.1333

Mathematical Reviews number (MathSciNet)
MR2443246

Zentralblatt MATH identifier
1149.22003

Subjects
Primary: 54H15: Transformation groups and semigroups [See also 20M20, 22-XX, 57Sxx] 22A22: Topological groupoids (including differentiable and Lie groupoids) [See also 58H05] 22F05: General theory of group and pseudogroup actions {For topological properties of spaces with an action, see 57S20}
Secondary: 57S30: Discontinuous groups of transformations 57S20: Noncompact Lie groups of transformations 57S10: Compact groups of homeomorphisms 57S05: Topological properties of groups of homeomorphisms or diffeomorphisms

Keywords
topological stack fundamental group Galois theory covering stack slice property coarse quotient coarse moduli

Citation

Noohi, Behrang. Fundamental groups of topological stacks with the slice property. Algebr. Geom. Topol. 8 (2008), no. 3, 1333--1370. doi:10.2140/agt.2008.8.1333. https://projecteuclid.org/euclid.agt/1513796889


Export citation

References

  • M A Armstrong, The fundamental group of the orbit space of a discontinuous group, Proc. Cambridge Philos. Soc. 64 (1968) 299–301
  • M A Armstrong, Calculating the fundamental group of an orbit space, Proc. Amer. Math. Soc. 84 (1982) 267–271
  • H Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993) 3–47
  • G E Bredon, Introduction to compact transformation groups, Pure and Applied Math. 46, Academic Press, New York (1972)
  • R Brown, Topology. A geometric account of general topology, homotopy types and the fundamental groupoid, second edition, Ellis Horwood Series: Math. and its Applications, Ellis Horwood Ltd., Chichester (1988)
  • A Grothendieck, editor, M Raynaud, Revêtements étales et groupe fondamental, Lecture Notes in Math. 224, Springer, Berlin (1971) Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1)
  • P J Higgins, J Taylor, The fundamental groupoid and the homotopy crossed complex of an orbit space, from: “Category theory (Gummersbach, 1981)”, Lecture Notes in Math. 962, Springer, Berlin (1982) 115–122
  • J-i Nagata, Modern general topology, second edition, North-Holland Math. Library 33, North-Holland Publishing Co., Amsterdam (1985)
  • B Noohi, Foundations of topological stacks I
  • R S Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. $(2)$ 73 (1961) 295–323
  • F Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. $(3)$ 16 (1966) 635–650
  • L Ribes, P Zalesskii, Profinite groups, Ergebnisse der Math. und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Math. [Results in Math. and Related Areas. 3rd Series.] 40, Springer, Berlin (2000)
  • A Weinstein, Linearization of regular proper groupoids, J. Inst. Math. Jussieu 1 (2002) 493–511
  • N T Zung, Proper groupoids and momentum maps: linearization, affinity, and convexity, Ann. Sci. École Norm. Sup. (4) 39 (2006) 841–869