Algebraic & Geometric Topology

A combinatorial description of the Heegaard Floer contact invariant

Olga Plamenevskaya

Full-text: Open access

Abstract

We observe that the Heegaard Floer contact invariant is combinatorial by applying the algorithm of Sarkar–Wang to the description of the contact invariant due to Honda–Kazez–Matić. We include an example of this combinatorial calculation.

Article information

Source
Algebr. Geom. Topol., Volume 7, Number 3 (2007), 1201-1209.

Dates
Received: 28 May 2007
Accepted: 22 July 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796738

Digital Object Identifier
doi:10.2140/agt.2007.7.1201

Mathematical Reviews number (MathSciNet)
MR2350279

Zentralblatt MATH identifier
1162.57021

Subjects
Primary: 57R17: Symplectic and contact topology
Secondary: 57R58: Floer homology

Keywords
contact structures open book decomposition Heegaard Floer homology

Citation

Plamenevskaya, Olga. A combinatorial description of the Heegaard Floer contact invariant. Algebr. Geom. Topol. 7 (2007), no. 3, 1201--1209. doi:10.2140/agt.2007.7.1201. https://projecteuclid.org/euclid.agt/1513796738


Export citation

References

  • M Dehn, Papers on group theory and topology, Springer, New York (1987)
  • E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: “Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)”, Higher Ed. Press, Beijing (2002) 405–414
  • K Honda, W Kazez, G Matić, On the contact class in Heegaard Floer homology
  • R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955–1097
  • P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact three-manifolds I, Geom. Topol. 8 (2004) 925–945
  • P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact three-manifolds II, J. Differential Geom. 75 (2007) 109–141
  • P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact three-manifolds III
  • C Manolescu, P Ozsváth, S Sarkar, On combinatorial link Floer homology
  • P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39–61
  • P Ozsváth, Z Szabó, Heegaard diagrams and Floer homology, from: “International Congress of Mathematicians Vol. II”, Eur. Math. Soc., Zürich (2006) 1083–1099
  • S Sarkar, J Wang, An algorithm for computing some Heegaard Floer homologies