Algebraic & Geometric Topology

Concordance of $\mathbb{Z}_p\times\mathbb{Z}_p$ actions on $S^4$

Michael McCooey

Full-text: Open access

Abstract

We prove that locally linear, orientation-preserving actions of G=p×p on S4 are concordant if and only if a 2–valued surgery obstruction vanishes, and discuss constructions and examples.

Article information

Source
Algebr. Geom. Topol., Volume 7, Number 2 (2007), 785-796.

Dates
Received: 31 May 2006
Revised: 16 May 2007
Accepted: 17 May 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796706

Digital Object Identifier
doi:10.2140/agt.2007.7.785

Mathematical Reviews number (MathSciNet)
MR2308965

Zentralblatt MATH identifier
1133.57023

Subjects
Primary: 57S25: Groups acting on specific manifolds
Secondary: 57S17: Finite transformation groups

Keywords
concordance group action four-manifold

Citation

McCooey, Michael. Concordance of $\mathbb{Z}_p\times\mathbb{Z}_p$ actions on $S^4$. Algebr. Geom. Topol. 7 (2007), no. 2, 785--796. doi:10.2140/agt.2007.7.785. https://projecteuclid.org/euclid.agt/1513796706


Export citation

References

  • G E Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics 46, Academic Press, New York (1972)
  • S E Cappell, J L Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. $(2)$ 99 (1974) 277–348
  • M H Freedman, F Quinn, Topology of 4–manifolds, Princeton Mathematical Series 39, Princeton University Press, Princeton, NJ (1990)
  • C H Giffen, The generalized Smith conjecture, Amer. J. Math. 88 (1966) 187–198
  • C M Gordon, On the higher-dimensional Smith conjecture, Proc. London Math. Soc. $(3)$ 29 (1974) 98–110
  • M A Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965) 225–271
  • M P McCooey, Four-manifolds which admit $\mathbb{Z}_p\times\mathbb{Z}_p$ actions, Forum Math. 14 (2002) 495–507
  • J M Montesinos, On twins in the four-sphere I, Quart. J. Math. Oxford Ser. $(2)$ 34 (1983) 171–199
  • J M Montesinos, On twins in the four-sphere II, Quart. J. Math. Oxford Ser. $(2)$ 35 (1984) 73–83
  • J W Morgan, H Bass (editors), The Smith conjecture, Pure and Applied Mathematics 112, Academic Press, Orlando, FL (1984)
  • K Murasugi, The Arf invariant for knot types, Proc. Amer. Math. Soc. 21 (1969) 69–72
  • F Quinn, Ends of maps II, Invent. Math. 68 (1982) 353–424
  • R A Robertello, An invariant of knot cobordism, Comm. Pure Appl. Math. 18 (1965) 543–555
  • D Rolfsen, Knots and Links, Publish or Perish (1976)
  • P A Smith, Transformations of finite period, Ann. of Math. $(2)$ 39 (1938) 127–164
  • D W Sumners, Smooth $\mathbb{Z}_p$–actions on spheres which leave knots pointwise fixed, Trans. Amer. Math. Soc. 205 (1975) 193–203
  • C T C Wall, Some $L$ groups of finite groups, Bull. Amer. Math. Soc. 79 (1973) 526–529
  • C T C Wall, Surgery on compact manifolds, second edition, Mathematical Surveys and Monographs 69, American Mathematical Society, Providence, RI (1999)