Algebraic & Geometric Topology

Tight contact structures and genus one fibered knots

John A Baldwin

Full-text: Open access

Abstract

We study contact structures compatible with genus one open book decompositions with one boundary component. Any monodromy for such an open book can be written as a product of Dehn twists around dual nonseparating curves in the once-punctured torus. Given such a product, we supply an algorithm to determine whether the corresponding contact structure is tight or overtwisted for all but a small family of reducible monodromies. We rely on Ozsváth–Szabó Heegaard Floer homology in our construction and, in particular, we completely identify the L–spaces with genus one, one boundary component, pseudo-Anosov open book decompositions. Lastly, we reveal a new infinite family of hyperbolic three-manifolds with no co-orientable taut foliations, extending the family discovered by Roberts, Shareshian, and Stein in [J. Amer. Math. Soc. 16 (2003) 639–679]

Article information

Source
Algebr. Geom. Topol., Volume 7, Number 2 (2007), 701-735.

Dates
Received: 4 July 2006
Revised: 21 March 2007
Accepted: 21 March 2007
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796702

Digital Object Identifier
doi:10.2140/agt.2007.7.701

Mathematical Reviews number (MathSciNet)
MR2308961

Zentralblatt MATH identifier
1202.57013

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds 57R17: Symplectic and contact topology 57R58: Floer homology
Secondary: 57R30: Foliations; geometric theory

Keywords
contact structure Floer homology knot fibered taut foliation L-space

Citation

Baldwin, John A. Tight contact structures and genus one fibered knots. Algebr. Geom. Topol. 7 (2007), no. 2, 701--735. doi:10.2140/agt.2007.7.701. https://projecteuclid.org/euclid.agt/1513796702


Export citation

References

  • J A Baldwin, A note on genus one fibered knots in lens spaces
  • D Calegari, N M Dunfield, Laminations and groups of homeomorphisms of the circle, Invent. Math. 152 (2003) 149–204
  • J B Etnyre, Lectures on open book decompositions and contact structures, from: “Floer homology, gauge theory, and low-dimensional topology”, Clay Math. Proc. 5, Amer. Math. Soc., Providence, RI (2006) 103–141
  • J B Etnyre, K Honda, Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002) 609–626
  • P Ghiggini, Tight contact structures on Seifert manifolds over $T\sp 2$ with one singular fibre, Algebr. Geom. Topol. 5 (2005) 785–833
  • E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637–677
  • N Goodman, Overtwisted open books from sobering arcs, Algebr. Geom. Topol. 5 (2005) 1173–1195
  • K Honda, W Kazez, G Matić, On the contact class in Heegaard Floer homology
  • K Honda, W Kazez, G Matić, Right-veering diffeomorphisms of a compact surface with boundary I
  • K Honda, W Kazez, G Matić, Right-veering diffeomorphisms of a compact surface with boundary II
  • P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries
  • P Lisca, A Stipsicz, Contact Ozsváth-Szabó Invariants and Giroux Torsion
  • B Ozbagci, A I Stipsicz, Surgery on contact 3-manifolds and Stein surfaces, Bolyai Society Mathematical Studies 13, Springer, Berlin (2004)
  • P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary
  • P Ozsváth, Z Szabó, Heegaard Floer Homologies and Contact Structures
  • P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries
  • P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311–334
  • P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58–116
  • P Ozsváth, Z Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005) 1–33
  • P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326–400
  • P Ozsváth, Z Szabó, A I Stipsicz, Planar open books and Floer homology
  • R Roberts, Taut foliations in punctured surface bundles. I, Proc. London Math. Soc. $(3)$ 82 (2001) 747–768
  • R Roberts, Taut foliations in punctured surface bundles. II, Proc. London Math. Soc. $(3)$ 83 (2001) 443–471
  • R Roberts, J Shareshian, M Stein, Infinitely many hyperbolic 3-manifolds which contain no Reebless foliation, J. Amer. Math. Soc. 16 (2003) 639–679
  • W P Thurston, The Geometry and Topology of Three-Manifolds, Princeton Univ. Math. Dept. Notes (1979)
  • W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417–431
  • W P Thurston, H E Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975) 345–347