Algebraic & Geometric Topology

Applications of combinatorial groups to Hopf invariant and the exponent problem

Jelena Grbić and Jie Wu

Full-text: Open access

Abstract

Combinatorial groups together with the groups of natural coalgebra transformations of tensor algebras are linked to the groups of homotopy classes of maps from the James construction to a loop space. This connection gives rise to applications to homotopy theory. The Hopf invariants of the Whitehead products are studied and a rate of exponent growth for the strong version of the Barratt Conjecture is given.

Article information

Source
Algebr. Geom. Topol., Volume 6, Number 5 (2006), 2229-2255.

Dates
Received: 23 October 2006
Accepted: 24 October 2006
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796636

Digital Object Identifier
doi:10.2140/agt.2006.6.2229

Mathematical Reviews number (MathSciNet)
MR2263065

Zentralblatt MATH identifier
1137.55003

Subjects
Primary: 55P35: Loop spaces
Secondary: 55Q25: Hopf invariants 55Q15: Whitehead products and generalizations 16W30

Keywords
combinatorial groups exponent problem Whitehead products Hopf invariant

Citation

Grbić, Jelena; Wu, Jie. Applications of combinatorial groups to Hopf invariant and the exponent problem. Algebr. Geom. Topol. 6 (2006), no. 5, 2229--2255. doi:10.2140/agt.2006.6.2229. https://projecteuclid.org/euclid.agt/1513796636


Export citation

References

  • M G Barratt, Spaces of finite characteristic, Quart. J. Math. Oxford Ser. $(2)$ 11 (1960) 124–136
  • F R Cohen, On combinatorial group theory in homotopy theory, preprint
  • F R Cohen, J C Moore, J A Neisendorfer, 519355
  • F R Cohen, P Selick, J Wu, Natural decompositions of self-smashes of 2-cell complexes, preprint
  • F R Cohen, L R Taylor, Homology of function spaces, Math. Z. 198 (1988) 299–316
  • J Grbić, J Wu, Natural transformations of tensor algebras and representations of combinatorial groups, Algebr. Geom. Topol. 6 (2006) 2189–2228
  • J A Neisendorfer, The exponent of a Moore space, from: “Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983)”, Ann. of Math. Stud. 113, Princeton Univ. Press (1987) 35–71
  • P Selick, J Wu, On natural coalgebra decompositions of tensor algebras and loop suspensions, Mem. Amer. Math. Soc. 148 (2000)
  • P Selick, J Wu, On functorial decompositions of self-smash products, Manuscripta Math. 111 (2003) 435–457
  • S Theriault, Exponents of mod-$2^r$ Moore spaces, to appear in Topology
  • J Wu, On maps from loop suspensions to loop spaces and the shuffle relations on the Cohen groups, to appear in Memoirs AMS
  • J Wu, On combinatorial calculations for the James-Hopf maps, Topology 37 (1998) 1011–1023