Algebraic & Geometric Topology

Twisted Alexander polynomials detect the unknot

Daniel S Silver and Susan G Williams

Full-text: Open access

Abstract

The group of a nontrivial knot admits a finite permutation representation such that the corresponding twisted Alexander polynomial is not a unit.

Article information

Source
Algebr. Geom. Topol., Volume 6, Number 4 (2006), 1893-1901.

Dates
Received: 5 June 2006
Revised: 20 August 2006
Accepted: 11 September 2006
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796609

Digital Object Identifier
doi:10.2140/agt.2006.6.1893

Mathematical Reviews number (MathSciNet)
MR2263053

Zentralblatt MATH identifier
1132.57010

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}
Secondary: 37B40: Topological entropy

Keywords
knot Alexander polynomial twisted Alexander polynomial.

Citation

Silver, Daniel S; Williams, Susan G. Twisted Alexander polynomials detect the unknot. Algebr. Geom. Topol. 6 (2006), no. 4, 1893--1901. doi:10.2140/agt.2006.6.1893. https://projecteuclid.org/euclid.agt/1513796609


Export citation

References

  • J C Cha, Fibred knots and twisted Alexander invariants, Trans. Amer. Math. Soc. 355 (2003) 4187–4200
  • R H Crowell, 0167976
  • J Hillman, Algebraic invariants of links, Series on Knots and Everything 32, World Scientific Publishing Co., River Edge, NJ (2002)
  • J A Hillman, C Livingston, S Naik, Twisted Alexander polynomials of periodic knots, Algebr. Geom. Topol. 6 (2006) 145–169
  • P Kirk, C Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999) 635–661
  • M Lackenby, Some 3-manifolds and 3-orbifolds with large fundamental group
  • X S Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. $($Engl. Ser.$)$ 17 (2001) 361–380
  • J Milnor, 0090056
  • D S Silver, S G Williams, Crowell's derived group and twisted polynomials, J. Knot Theory Ramifications (in press)
  • D S Silver, S G Williams, Lifting representations of $\Bbb Z$-groups, Israel J. Math. 152 (2006) 313–331
  • M Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994) 241–256