Algebraic & Geometric Topology

Unoriented topological quantum field theory and link homology

Vladimir Turaev and Paul Turner

Full-text: Open access

Abstract

We investigate link homology theories for stable equivalence classes of link diagrams on orientable surfaces. We apply (1+1)–dimensional unoriented topological quantum field theories to Bar-Natan’s geometric formalism to define new theories for stable equivalence classes.

Article information

Source
Algebr. Geom. Topol., Volume 6, Number 3 (2006), 1069-1093.

Dates
Received: 1 September 2005
Revised: 16 January 2006
Accepted: 2 May 2006
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796572

Digital Object Identifier
doi:10.2140/agt.2006.6.1069

Mathematical Reviews number (MathSciNet)
MR2253441

Zentralblatt MATH identifier
1134.57004

Subjects
Primary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 57R56: Topological quantum field theories
Secondary: 81T40: Two-dimensional field theories, conformal field theories, etc.

Keywords
Khovanov homology virtual link stable equivalence unoriented topological quantum field theory

Citation

Turaev, Vladimir; Turner, Paul. Unoriented topological quantum field theory and link homology. Algebr. Geom. Topol. 6 (2006), no. 3, 1069--1093. doi:10.2140/agt.2006.6.1069. https://projecteuclid.org/euclid.agt/1513796572


Export citation

References