Algebraic & Geometric Topology

Ozsváth–Szabó and Rasmussen invariants of doubled knots

Charles Livingston and Swatee Naik

Full-text: Open access

Abstract

Let ν be any integer-valued additive knot invariant that bounds the smooth 4–genus of a knot K, |ν(K)|g4(K), and determines the 4–ball genus of positive torus knots, ν(Tp,q)=(p1)(q1)2. Either of the knot concordance invariants of Ozsváth-Szabó or Rasmussen, suitably normalized, have these properties. Let D±(K,t) denote the positive or negative t–twisted double of K. We prove that if ν(D+(K,t))=±1, then ν(D(K,t))=0. It is also shown that ν(D+(K,t))=1 for all t TB(K) and ν(D+(K,t))=0 for all t TB(K), where  TB(K) denotes the Thurston-Bennequin number.

A realization result is also presented: for any 2g×2g Seifert matrix A and integer a, |a|g, there is a knot with Seifert form A and ν(K)=a.

Article information

Source
Algebr. Geom. Topol., Volume 6, Number 2 (2006), 651-657.

Dates
Received: 26 February 2006
Accepted: 2 March 2006
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796539

Digital Object Identifier
doi:10.2140/agt.2006.6.651

Mathematical Reviews number (MathSciNet)
MR2240910

Zentralblatt MATH identifier
1096.57010

Subjects
Primary: 57M27: Invariants of knots and 3-manifolds
Secondary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}

Keywords
doubled knot Ozsvath-Szabo invariant Rasmussen invariant

Citation

Livingston, Charles; Naik, Swatee. Ozsváth–Szabó and Rasmussen invariants of doubled knots. Algebr. Geom. Topol. 6 (2006), no. 2, 651--657. doi:10.2140/agt.2006.6.651. https://projecteuclid.org/euclid.agt/1513796539


Export citation

References