Algebraic & Geometric Topology

Tight contact structures on Seifert manifolds over $T^2$ with one singular fibre

Paolo Ghiggini

Full-text: Open access

Abstract

In this article we classify up to isotopy tight contact structures on Seifert manifolds over the torus with one singular fibre.

Article information

Source
Algebr. Geom. Topol., Volume 5, Number 2 (2005), 785-833.

Dates
Received: 27 October 2003
Revised: 14 July 2005
Accepted: 24 January 2005
First available in Project Euclid: 20 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513796432

Digital Object Identifier
doi:10.2140/agt.2005.5.785

Mathematical Reviews number (MathSciNet)
MR2153106

Zentralblatt MATH identifier
1084.57025

Subjects
Primary: 57R17: Symplectic and contact topology
Secondary: 57M50: Geometric structures on low-dimensional manifolds

Keywords
contact structure tight Seifert $3$–manifold convex surface

Citation

Ghiggini, Paolo. Tight contact structures on Seifert manifolds over $T^2$ with one singular fibre. Algebr. Geom. Topol. 5 (2005), no. 2, 785--833. doi:10.2140/agt.2005.5.785. https://projecteuclid.org/euclid.agt/1513796432


Export citation

References

  • B Aebischer, M Borer, M Kälin, Ch Leuenberger, H M Reimann, Symplectic geometry, (an introduction based on the seminar in Bern, 1992), Progress in Mathematics 124, Birkhäuser Verlag, Basel (1994)
  • V Colin, Une infinité de structures de contact tendues sur les variétés toroïdales, Comment. Math. Helv. 76 (2001) 353–372
  • V Colin, E Giroux, K Honda, Notes on the isotopy finiteness, e-print.
  • V Colin, E Giroux, K Honda, On the coarse classification of tight contact structures, from: “Topology and Geometry of Manifolds”, Proceedings of Symposia in Pure Mathematics 71, American Mathematical Society (2003) 109–120
  • F Ding, H Geiges, Symplectic fillability of tight contact structures on torus bundles, \agtref120018153172
  • Fan Ding, Hansj örg Geiges, A Legendrian surgery presentation of contact 3-manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004) 583–598
  • Y Eliashberg, Classification of overtwisted contact structures on $3$-manifolds, Invent. Math. 98 (1989) 623–637
  • Y Eliashberg, Contact $3$-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier (Grenoble) 42 (1992) 165–192
  • J Etnyre, Legendrian and transversal knots.
  • J Etnyre, Introductory lectures on contact geometry, from: “Topology and Geometry of Manifolds”, Proceedings of Symposia in Pure Mathematics 71, American Mathematical Society (2003) 81–107
  • J Etnyre, K Honda, On the nonexistence of tight contact structures, Ann. of Math. (2) 153 (2001) 749–766
  • A T Fomenko, S V Matveev, Algorithmic and computer methods for three-manifolds, (translated from the 1991 Russian original by M Tsaplina and Michiel Hazewinkel and revised by the authors, with a preface by Hazewinkel), Mathematics and its Applications 425, Kluwer Academic Publishers, Dordrecht (1997)
  • P Ghiggini, S Sch önenberger, On the classification of tight contact structures, from: “Topology and Geometry of Manifolds”, Proceedings of Symposia in Pure Mathematics 71, American Mathematical Society (2003) 121–151
  • P Ghiggini, P Lisca, A Stipsicz, Classification of tight contact structures on small Seifert $3$–manifolds with $e_0 \geq 0$, to appear in Proc. Amer. Math. Soc. \arxivmath.SG/0406080
  • E Giroux, Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637–677
  • E Giroux, Topologie de contact en dimension $3$ (autour des travaux de Yakov Eliashberg), Séminaire Bourbaki, Vol. 1992/93, Astérisque 216 (1993) Exp. No. 760, 3, 7–33,
  • E Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. (4) 27 (1994) 697–705
  • E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615–689
  • E Giroux, Structures de contact sur les variétés fibrées en cercles audessus d'une surface, Comment. Math. Helv. 76 (2001) 218–262
  • R Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998) 619–693
  • A Hatcher, Notes on Basic 3-Manifold Topology, available from: http://www.math.cornell.edu/~hatcher/
  • K Honda, On the classification of tight contact structures. I, \gtref4200011309368
  • K Honda, On the classification of tight contact structures. II, J. Differential Geom. 55 (2000) 83–143
  • K Honda, Factoring nonrotative ${T}^2 \times {I}$ layers, ([22] erratum), Geom. Topol. 5 (2001) 925–938
  • K Honda, Gluing tight contact structures, Duke Math. J. 115 (2002) 435–478
  • K Honda, W Kazez, G Matić, Tight contact structures and taut foliations, \gtref420007219242
  • K Honda, W Kazez, Gordana Matić, Tight contact structures on fibered hyperbolic 3-manifolds, J. Differential Geom. 64 (2003) 305–358
  • Y Kanda, The classification of tight contact structures on the $3$-torus, Comm. Anal. Geom. 5 (1997) 413–438
  • P Lisca, G Matić, Stein $4$-manifolds with boundary and contact structures, Topology Appl. 88 (1998) 55–66
  • P Lisca, A Stipsicz, Tight, not semi-fillable contact circle bundles, Math. Ann. 328 (2004) 285–298
  • P Orlik, Seifert manifolds, Springer-Verlag, Berlin (1972), lecture Notes in Mathematics, Vol. 291
  • H Wu, Tight Contact Small Seifert Spaces with $e_0\neq0,-1,-2$.