Algebraic & Geometric Topology

Higher topological complexity and its symmetrization

Ibai Basabe, Jesús González, Yuli B Rudyak, and Dai Tamaki

Full-text: Open access

Abstract

We develop the properties of the n th sequential topological complexity TCn, a homotopy invariant introduced by the third author as an extension of Farber’s topological model for studying the complexity of motion planning algorithms in robotics. We exhibit close connections of TCn(X) to the Lusternik–Schnirelmann category of cartesian powers of X, to the cup length of the diagonal embedding XXn, and to the ratio between homotopy dimension and connectivity of X. We fully compute the numerical value of TCn for products of spheres, closed 1–connected symplectic manifolds and quaternionic projective spaces. Our study includes two symmetrized versions of TCn(X). The first one, unlike Farber and Grant’s symmetric topological complexity, turns out to be a homotopy invariant of X; the second one is closely tied to the homotopical properties of the configuration space of cardinality-n subsets of X. Special attention is given to the case of spheres.

Article information

Source
Algebr. Geom. Topol., Volume 14, Number 4 (2014), 2103-2124.

Dates
Received: 31 August 2013
Accepted: 4 January 2014
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715959

Digital Object Identifier
doi:10.2140/agt.2014.14.2103

Mathematical Reviews number (MathSciNet)
MR3331610

Zentralblatt MATH identifier
1348.55005

Subjects
Primary: 55M30: Ljusternik-Schnirelman (Lyusternik-Shnirelʹman) category of a space
Secondary: 55R80: Discriminantal varieties, configuration spaces

Keywords
Lusternik–Schnirelmann category Švarc genus topological complexity motion planning configuration spaces

Citation

Basabe, Ibai; González, Jesús; Rudyak, Yuli B; Tamaki, Dai. Higher topological complexity and its symmetrization. Algebr. Geom. Topol. 14 (2014), no. 4, 2103--2124. doi:10.2140/agt.2014.14.2103. https://projecteuclid.org/euclid.agt/1513715959


Export citation

References

  • I Basabe, J González, Y Rudyak, D Tamaki, Higher topological complexity and its symmetrization
  • G E Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics 46, Academic Press, New York (1972)
  • O Cornea, G Lupton, J Oprea, D Tanré, Lusternik–Schnirelmann category, Math. Surveys Monographs 103, Amer. Math. Soc. (2003)
  • A Dold, Lectures on algebraic topology, Classics in Mathematics, Springer, Berlin (1995)
  • M Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003) 211–221
  • M Farber, Instabilities of robot motion, Topology Appl. 140 (2004) 245–266
  • M Farber, Topology of robot motion planning, from: “Morse theoretic methods in nonlinear analysis and in symplectic topology”, (P Biran, O Cornea, F Lalonde, editors), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer, Dordrecht (2006) 185–230
  • M Farber, Invitation to topological robotics, Zurich Lectures Adv. Math. 10, Eur. Math. Soc., Zürich (2008)
  • M Farber, M Grant, Symmetric motion planning, from: “Topology and robotics”, (M Farber, R Ghrist, M Burger, D Koditschek, editors), Contemp. Math. 438, Amer. Math. Soc. (2007) 85–104
  • M Farber, M Grant, Robot motion planning, weights of cohomology classes, and cohomology operations, Proc. Amer. Math. Soc. 136 (2008) 3339–3349
  • M Farber, S Tabachnikov, S Yuzvinsky, Topological robotics: Motion planning in projective spaces, Int. Math. Res. Not. 2003 (2003) 1853–1870
  • M Farber, S Yuzvinsky, Topological robotics: Subspace arrangements and collision free motion planning, from: “Geometry, topology, and mathematical physics”, (V M Buchstaber, I M Krichever, editors), Amer. Math. Soc. Transl. Ser. 2 212, Amer. Math. Soc. (2004) 145–156
  • E M Feichtner, G M Ziegler, The integral cohomology algebras of ordered configuration spaces of spheres, Doc. Math. 5 (2000) 115–139
  • A M Gleason, Spaces with a compact Lie group of transformations, Proc. Amer. Math. Soc. 1 (1950) 35–43
  • J González, P Landweber, Symmetric topological complexity of projective and lens spaces, Algebr. Geom. Topol. 9 (2009) 473–494
  • N Iwase, M Sakai, Topological complexity is a fibrewise L–S category, Topology Appl. 157 (2010) 10–21
  • J W Jaworowski, Extensions of $G$–maps and Euclidean $G$–retracts, Math. Z. 146 (1976) 143–148
  • S Kallel, Symmetric products, duality and homological dimension of configuration spaces, from: “Groups, homotopy and configuration spaces”, (N Iwase, T Kohno, R Levi, D Tamaki, J Wu, editors), Geom. Topol. Monogr. 13 (2008) 499–527
  • R Karasev, P Landweber, Estimating the higher symmetric topological complexity of spheres, Algebr. Geom. Topol. 12 (2012) 75–94
  • J-C Latombe, Robot motion planning, Kluwer Int. Series Engin. Comp. Sci. 124, Kluwer Academic, Boston (1991)
  • S M LaValle, Planning algorithms, Cambridge Univ. Press (2006)
  • G Lupton, J Scherer, Topological complexity of $H$–spaces, Proc. Amer. Math. Soc. 141 (2013) 1827–1838
  • Y B Rudyak, On higher analogs of topological complexity, Topology Appl. 157 (2010) 916–920 Erratum in Topology Appl. (157) 2010 1118
  • A S Švarc, The genus of a fiber space, Dokl. Akad. Nauk SSSR 119 (1958) 219–222 In Russian; translated in Amer. Math. Soc. Transl. 55 (1966) 49–140