Algebraic & Geometric Topology

Topological invariants from nonrestricted quantum groups

Nathan Geer and Bertrand Patureau-Mirand

Full-text: Open access

Abstract

We introduce the notion of a relative spherical category. We prove that such a category gives rise to the generalized Kashaev and Turaev–Viro-type 3–manifold invariants defined in [J. Reine Angew. Math. 673 (2012) 69–123] and [Adv. Math. 228 (2011) 1163–1202], respectively. In this case we show that these invariants are equal and extend to what we call a relative homotopy quantum field theory which is a branch of the topological quantum field theory founded by E Witten and M Atiyah. Our main examples of relative spherical categories are the categories of finite-dimensional weight modules over nonrestricted quantum groups considered by C De Concini, V Kac, C Procesi, N Reshetikhin and M Rosso. These categories are not semisimple and have an infinite number of nonisomorphic irreducible modules all having vanishing quantum dimensions. We also show that these categories have associated ribbon categories which gives rise to renormalized link invariants. In the case of sl2 these link invariants are the Alexander-type multivariable invariants defined by Y Akutsu, T Deguchi and T Ohtsuki [J. Knot Theory Ramifications 1 (1992) 161–184].

Article information

Source
Algebr. Geom. Topol., Volume 13, Number 6 (2013), 3305-3363.

Dates
Received: 3 July 2012
Revised: 17 May 2013
Accepted: 20 May 2013
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715735

Digital Object Identifier
doi:10.2140/agt.2013.13.3305

Mathematical Reviews number (MathSciNet)
MR3248736

Zentralblatt MATH identifier
1273.17018

Subjects
Primary: 17B37: Quantum groups (quantized enveloping algebras) and related deformations [See also 16T20, 20G42, 81R50, 82B23] 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45} 57M27: Invariants of knots and 3-manifolds

Keywords
unrestricted quantum groups homotopy quantum field theory psi hat systems

Citation

Geer, Nathan; Patureau-Mirand, Bertrand. Topological invariants from nonrestricted quantum groups. Algebr. Geom. Topol. 13 (2013), no. 6, 3305--3363. doi:10.2140/agt.2013.13.3305. https://projecteuclid.org/euclid.agt/1513715735


Export citation

References

  • Y Akutsu, T Deguchi, T Ohtsuki, Invariants of colored links, J. Knot Theory Ramifications 1 (1992) 161–184
  • S Baseilhac, R Benedetti, Quantum hyperbolic invariants of $3$–manifolds with ${\rm PSL}(2,\Bbb C)$–characters, Topology 43 (2004) 1373–1423
  • S Baseilhac, R Benedetti, Quantum hyperbolic geometry, Algebr. Geom. Topol. 7 (2007) 845–917
  • J Bichon, Cosovereign Hopf algebras, J. Pure Appl. Algebra 157 (2001) 121–133
  • R Brown, Groupoids and van Kampen's theorem, Proc. London Math. Soc. 17 (1967) 385–401
  • V Chari, A Pressley, A guide to quantum groups, Cambridge Univ. Press (1994)
  • F Costantino, N Geer, B Patureau-Mirand, Quantum invariants of $3$–manifolds via link surgery presentations and non-semi-simple categories
  • C De Concini, V G Kac, Representations of quantum groups at roots of $1$, from: “Operator algebras, unitary representations, enveloping algebras, and invariant theory”, (A Connes, M Duflo, A Joseph, R Rentschler, editors), Progr. Math. 92, Birkhäuser, Boston, MA (1990) 471–506
  • C De Concini, V G Kac, C Procesi, Quantum coadjoint action, J. Amer. Math. Soc. 5 (1992) 151–189
  • C De Concini, V G Kac, C Procesi, Some remarkable degenerations of quantum groups, Comm. Math. Phys. 157 (1993) 405–427
  • C De Concini, C Procesi, N Reshetikhin, M Rosso, Hopf algebras with trace and representations, Invent. Math. 161 (2005) 1–44
  • N Geer, R Kashaev, V Turaev, Tetrahedral forms in monoidal categories and $3$–manifold invariants, J. Reine Angew. Math. 673 (2012) 69–123
  • N Geer, J Kujawa, B Patureau-Mirand, Generalized trace and modified dimension functions on ribbon categories, Selecta Math. 17 (2011) 453–504
  • N Geer, B Patureau-Mirand, Multivariable link invariants arising from $\mathfrak{sl}(2 \vert 1)$ and the Alexander polynomial, J. Pure Appl. Algebra 210 (2007) 283–298
  • N Geer, B Patureau-Mirand, Multivariable link invariants arising from Lie superalgebras of type I, J. Knot Theory Ramifications 19 (2010) 93–115
  • N Geer, B Patureau-Mirand, V Turaev, Modified quantum dimensions and re-normalized link invariants, Compos. Math. 145 (2009) 196–212
  • N Geer, B Patureau-Mirand, V Turaev, Modified $6j$–symbols and $3$–manifold invariants, Adv. Math. 228 (2011) 1163–1202
  • N Geer, B Patureau-Mirand, A Virelizier, Modified traces and $6j$–symbols in pivotal categories, in preparation
  • A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)
  • R M Kashaev, Quantum dilogarithm as a $6j$–symbol, Modern Phys. Lett. A 9 (1994) 3757–3768
  • R M Kashaev, A link invariant from quantum dilogarithm, Modern Phys. Lett. A 10 (1995) 1409–1418
  • S Majid, Foundations of quantum group theory, Cambridge Univ. Press (1995)
  • H Murakami, J Murakami, The colored Jones polynomials and the simplicial volume of a knot, Acta Math. 186 (2001) 85–104
  • W D Neumann, Combinatorics of triangulations and the Chern–Simons invariant for hyperbolic $3$–manifolds, from: “Topology '90”, (B Apanasov, W D Neumann, A W Reid, L Siebenmann, editors), Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter, Berlin (1992) 243–271
  • W D Neumann, Hilbert's $3^{\it rd}$ problem and invariants of $3$–manifolds, from: “The Epstein birthday schrift”, (I Rivin, C Rourke, C Series, editors), Geom. Topol. Monogr. 1 (1998) 383–411
  • J Petit, Decomposition of the Turaev–Viro TQFT
  • V G Turaev, Quantum invariants of knots and $3$–manifolds, de Gruyter Studies in Mathematics 18, Walter de Gruyter & Co., Berlin (1994)
  • V Turaev, Homotopy quantum field theory, EMS Tracts in Mathematics 10, Eur. Math. Soc., Zürich (2010)
  • V G Turaev, O Y Viro, State sum invariants of $3$–manifolds and quantum $6j$–symbols, Topology 31 (1992) 865–902
  • V Turaev, H Wenzl, Quantum invariants of $3$–manifolds associated with classical simple Lie algebras, Internat. J. Math. 4 (1993) 323–358