Algebraic & Geometric Topology

The three smallest compact arithmetic hyperbolic $5$–orbifolds

Vincent Emery and Ruth Kellerhals

Full-text: Open access


We determine the three hyperbolic 5–orbifolds of smallest volume among compact arithmetic orbifolds, and we identify their fundamental groups with hyperbolic Coxeter groups.

Article information

Algebr. Geom. Topol., Volume 13, Number 2 (2013), 817-829.

Received: 24 August 2012
Accepted: 1 November 2012
First available in Project Euclid: 19 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx]
Secondary: 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27] 20F55: Reflection and Coxeter groups [See also 22E40, 51F15] 51M25: Length, area and volume [See also 26B15]

hyperbolic orbifolds hyperbolic volume arithmetic groups Coxeter groups


Emery, Vincent; Kellerhals, Ruth. The three smallest compact arithmetic hyperbolic $5$–orbifolds. Algebr. Geom. Topol. 13 (2013), no. 2, 817--829. doi:10.2140/agt.2013.13.817.

Export citation


  • M Belolipetsky, V Emery, On volumes of arithmetic quotients of ${\rm PO}(n,1)\sp \circ$, $n$ odd, Proc. Lond. Math. Soc. 105 (2012) 541–570
  • The Bordeaux database Available at \setbox0\makeatletter\@url \unhbox0
  • V O Bugaenko, Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring ${\bf Z}[(\sqrt{5}+1)/2]$, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1984) 6–12 In Russian; translated in Moscow Univ. Math. Bull. 39:5 (1984) 6–14
  • H Cohen, F Diaz y Diaz, M Olivier, Computing ray class groups, conductors and discriminants, Math. Comp. 67 (1998) 773–795
  • V Emery, Du volume des quotients arithmétiques de l'espace hyperbolique, PhD thesis, University of Fribourg (2009)
  • S Freundt, QaoS online database Available at \setbox0\makeatletter\@url {\unhbox0
  • H-C Im Hof, Napier cycles and hyperbolic Coxeter groups, Bull. Soc. Math. Belg. Sér. A 42 (1990) 523–545
  • R Kellerhals, Scissors congruence, the golden ratio and volumes in hyperbolic $5$–space, Discrete Comput. Geom. 47 (2012) 629–658
  • H Klingen, Über die Werte der Dedekindschen Zetafunktion, Math. Ann. 145 (1961/1962) 265–272
  • V S Makarov, The Fedorov groups of four-dimensional and five-dimensional Lobačevskiĭ space, from: “Studies in General Algebra”, volume 1, Kišinev. Gos. Univ., Kishinev (1968) 120–129
  • J Milnor, The Schläfli differential equality, from: “Collected papers”, volume 1, Publish or Perish, Houston, TX (1994) x+295
  • A Mohammadi, A Salehi Golsefidy, Discrete subgroups acting transitively on vertices of a Bruhat–Tits building, Duke Math. J. 161 (2012) 483–544
  • G Prasad, Volumes of $S$–arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. (1989) 91–117
  • È B Vinberg, Discrete groups generated by reflections in Lobačevskiĭ spaces, Math. USSR Sb. 1 (1967) 429–444
  • D Zagier, H Gangl, Classical and elliptic polylogarithms and special values of $L$–series, from: “The arithmetic and geometry of algebraic cycles”, (B B Gordon, J D Lewis, S Müller-Stach, S Saito, N Yui, editors), NATO Sci. Ser. C Math. Phys. Sci. 548, Kluwer Acad. Publ., Dordrecht (2000) 561–615