Algebraic & Geometric Topology

The three smallest compact arithmetic hyperbolic $5$–orbifolds

Vincent Emery and Ruth Kellerhals

Full-text: Open access

Abstract

We determine the three hyperbolic 5–orbifolds of smallest volume among compact arithmetic orbifolds, and we identify their fundamental groups with hyperbolic Coxeter groups.

Article information

Source
Algebr. Geom. Topol., Volume 13, Number 2 (2013), 817-829.

Dates
Received: 24 August 2012
Accepted: 1 November 2012
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715540

Digital Object Identifier
doi:10.2140/agt.2013.13.817

Mathematical Reviews number (MathSciNet)
MR3044594

Zentralblatt MATH identifier
1266.22014

Subjects
Primary: 22E40: Discrete subgroups of Lie groups [See also 20Hxx, 32Nxx]
Secondary: 11R42: Zeta functions and $L$-functions of number fields [See also 11M41, 19F27] 20F55: Reflection and Coxeter groups [See also 22E40, 51F15] 51M25: Length, area and volume [See also 26B15]

Keywords
hyperbolic orbifolds hyperbolic volume arithmetic groups Coxeter groups

Citation

Emery, Vincent; Kellerhals, Ruth. The three smallest compact arithmetic hyperbolic $5$–orbifolds. Algebr. Geom. Topol. 13 (2013), no. 2, 817--829. doi:10.2140/agt.2013.13.817. https://projecteuclid.org/euclid.agt/1513715540


Export citation

References

  • M Belolipetsky, V Emery, On volumes of arithmetic quotients of ${\rm PO}(n,1)\sp \circ$, $n$ odd, Proc. Lond. Math. Soc. 105 (2012) 541–570
  • The Bordeaux database Available at \setbox0\makeatletter\@url ftp://megrez.math.u-bordeaux.fr/pub/numberfields \unhbox0
  • V O Bugaenko, Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring ${\bf Z}[(\sqrt{5}+1)/2]$, Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1984) 6–12 In Russian; translated in Moscow Univ. Math. Bull. 39:5 (1984) 6–14
  • H Cohen, F Diaz y Diaz, M Olivier, Computing ray class groups, conductors and discriminants, Math. Comp. 67 (1998) 773–795
  • V Emery, Du volume des quotients arithmétiques de l'espace hyperbolique, PhD thesis, University of Fribourg (2009)
  • S Freundt, QaoS online database Available at \setbox0\makeatletter\@url http://qaos.math.tu-berlin.de {\unhbox0
  • H-C Im Hof, Napier cycles and hyperbolic Coxeter groups, Bull. Soc. Math. Belg. Sér. A 42 (1990) 523–545
  • R Kellerhals, Scissors congruence, the golden ratio and volumes in hyperbolic $5$–space, Discrete Comput. Geom. 47 (2012) 629–658
  • H Klingen, Über die Werte der Dedekindschen Zetafunktion, Math. Ann. 145 (1961/1962) 265–272
  • V S Makarov, The Fedorov groups of four-dimensional and five-dimensional Lobačevskiĭ space, from: “Studies in General Algebra”, volume 1, Kišinev. Gos. Univ., Kishinev (1968) 120–129
  • J Milnor, The Schläfli differential equality, from: “Collected papers”, volume 1, Publish or Perish, Houston, TX (1994) x+295
  • A Mohammadi, A Salehi Golsefidy, Discrete subgroups acting transitively on vertices of a Bruhat–Tits building, Duke Math. J. 161 (2012) 483–544
  • G Prasad, Volumes of $S$–arithmetic quotients of semi-simple groups, Inst. Hautes Études Sci. Publ. Math. (1989) 91–117
  • È B Vinberg, Discrete groups generated by reflections in Lobačevskiĭ spaces, Math. USSR Sb. 1 (1967) 429–444
  • D Zagier, H Gangl, Classical and elliptic polylogarithms and special values of $L$–series, from: “The arithmetic and geometry of algebraic cycles”, (B B Gordon, J D Lewis, S Müller-Stach, S Saito, N Yui, editors), NATO Sci. Ser. C Math. Phys. Sci. 548, Kluwer Acad. Publ., Dordrecht (2000) 561–615