Algebraic & Geometric Topology

Free group automorphisms with parabolic boundary orbits

Arnaud Hilion

Full-text: Open access

Abstract

For N4, we show that there exist automorphisms of the free group FN which have a parabolic orbit in FN. In fact, we exhibit a technology for producing infinitely many such examples.

Article information

Source
Algebr. Geom. Topol., Volume 12, Number 2 (2012), 933-950.

Dates
Received: 22 September 2011
Revised: 28 January 2012
Accepted: 28 January 2012
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715375

Digital Object Identifier
doi:10.2140/agt.2012.12.933

Mathematical Reviews number (MathSciNet)
MR2928899

Zentralblatt MATH identifier
1244.20028

Subjects
Primary: 20E05: Free nonabelian groups 20E36: Automorphisms of infinite groups [For automorphisms of finite groups, see 20D45] 37B25: Lyapunov functions and stability; attractors, repellers 37E15: Combinatorial dynamics (types of periodic orbits)
Secondary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx] 37B05: Transformations and group actions with special properties (minimality, distality, proximality, etc.)

Keywords
automorphism of free group fixed point symbolic dynamics

Citation

Hilion, Arnaud. Free group automorphisms with parabolic boundary orbits. Algebr. Geom. Topol. 12 (2012), no. 2, 933--950. doi:10.2140/agt.2012.12.933. https://projecteuclid.org/euclid.agt/1513715375


Export citation

References

  • M Bestvina, M Feighn, M Handel, The Tits alternative for ${\rm Out}(F\sb n)$ I: Dynamics of exponentially-growing automorphisms, Ann. of Math. 151 (2000) 517–623
  • M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. 135 (1992) 1–51
  • M M Cohen, M Lustig, On the dynamics and the fixed subgroup of a free group automorphism, Invent. Math. 96 (1989) 613–638
  • D Cooper, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra 111 (1987) 453–456
  • M Feighn, M Handel, The recognition theorem for ${\rm Out}(F\sb n)$, Groups Geom. Dyn. 5 (2011) 39–106
  • D Gaboriau, A Jaeger, G Levitt, M Lustig, An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998) 425–452
  • É Ghys, P de la Harpe, editors, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser, Boston (1990) Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988
  • M Handel, L Mosher, Subgroup classification in $\mathrm{Out}(F_n)$
  • M Handel, W P Thurston, New proofs of some results of Nielsen, Adv. in Math. 56 (1985) 173–191
  • A Hilion, Dynamique des automorphismes des groupes libres, PhD thesis, Université Toulouse 3 (2004)
  • G Levitt, Homéomorphismes dynamiquement simples de l'ensemble de Cantor, Enseign. Math. 44 (1998) 279–289
  • G Levitt, Counting growth types of automorphisms of free groups, Geom. Funct. Anal. 19 (2009) 1119–1146
  • G Levitt, M Lustig, Most automorphisms of a hyperbolic group have very simple dynamics, Ann. Sci. École Norm. Sup. 33 (2000) 507–517
  • G Levitt, M Lustig, Periodic ends, growth rates, Hölder dynamics for automorphisms of free groups, Comment. Math. Helv. 75 (2000) 415–429
  • G Levitt, M Lustig, Irreducible automorphisms of $F\sb n$ have north-south dynamics on compactified outer space, J. Inst. Math. Jussieu 2 (2003) 59–72
  • G Levitt, M Lustig, Automorphisms of free groups have asymptotically periodic dynamics, J. Reine Angew. Math. 619 (2008) 1–36
  • O S Maslakova, The fixed point group of a free group automorphism, Algebra Logika 42 (2003) 422–472, 510–511
  • J Nielsen, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1917) 385–397
  • J Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927) 189–358
  • J Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. II, Acta Math. 53 (1929) 1–76
  • J Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. III, Acta Math. 58 (1932) 87–167