Algebraic & Geometric Topology

Characteristic classes of proalgebraic varieties and motivic measures

Shoji Yokura

Full-text: Open access

Abstract

Gromov initiated what he calls “symbolic algebraic geometry”, in which he studied proalgebraic varieties. In this paper we formulate a general theory of characteristic classes of proalgebraic varieties as a natural transformation, which is a natural extension of the well-studied theories of characteristic classes of singular varieties. Fulton–MacPherson bivariant theory is a key tool for our formulation and our approach naturally leads us to the notion of motivic measure and also its generalization.

Article information

Source
Algebr. Geom. Topol., Volume 12, Number 1 (2012), 601-641.

Dates
Received: 21 April 2010
Revised: 21 November 2011
Accepted: 19 December 2011
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715351

Digital Object Identifier
doi:10.2140/agt.2012.12.601

Mathematical Reviews number (MathSciNet)
MR2916288

Zentralblatt MATH identifier
1243.14010

Subjects
Primary: 14C17: Intersection theory, characteristic classes, intersection multiplicities [See also 13H15] 18F99: None of the above, but in this section
Secondary: 55N99: None of the above, but in this section 14E18: Arcs and motivic integration 18A99: None of the above, but in this section 55N35: Other homology theories

Keywords
characteristic class of singular variety Fulton–MacPherson bivariant theory relative Grothendieck group of variety motivic measure proalgebraic variety

Citation

Yokura, Shoji. Characteristic classes of proalgebraic varieties and motivic measures. Algebr. Geom. Topol. 12 (2012), no. 1, 601--641. doi:10.2140/agt.2012.12.601. https://projecteuclid.org/euclid.agt/1513715351


Export citation

References

  • P Aluffi, Chern classes of birational varieties, Int. Math. Res. Not. 2004 (2004) 3367–3377
  • P Aluffi, Modification systems and integration in their Chow groups, Selecta Math. 11 (2005) 155–202
  • M Artin, B Mazur, Etale homotopy, Lecture Notes in Math. 100, Springer, Berlin (1969)
  • M F Atiyah, The signature of fibre-bundles, from: “Global Analysis (Papers in Honor of K Kodaira)”, (D C Spencer, S Iyanaga, editors), Univ. Tokyo Press (1969) 73–84
  • J Ax, Injective endomorphisms of varieties and schemes, Pacific J. Math. 31 (1969) 1–7
  • P Baum, W Fulton, R MacPherson, Riemann–Roch for singular varieties, Inst. Hautes Études Sci. Publ. Math. (1975) 101–145
  • F Bittner, The universal Euler characteristic for varieties of characteristic zero, Compos. Math. 140 (2004) 1011–1032
  • K Borsuk, Theory of shape, Lecture Notes Series 28, Matematisk Institut, Aarhus Universitet (1971)
  • S Bouc, Green functors and $G$–sets, Lecture Notes in Math. 1671, Springer, Berlin (1997)
  • J-P Brasselet, Existence des classes de Chern en théorie bivariante, from: “Analysis and topology on singular spaces, II, III (Luminy, 1981)”, Astérisque 101, Soc. Math. France (1983) 7–22
  • J-P Brasselet, J Schürmann, S Yokura, Classes de Hirzebruch et classes de Chern motiviques, C. R. Math. Acad. Sci. Paris 342 (2006) 325–328
  • J-P Brasselet, J Schürmann, S Yokura, On Grothendieck transformations in Fulton–MacPherson's bivariant theory, J. Pure Appl. Algebra 211 (2007) 665–684
  • J-P Brasselet, J Schürmann, S Yokura, On the uniqueness of bivariant Chern class and bivariant Riemann–Roch transformations, Adv. Math. 210 (2007) 797–812
  • J-P Brasselet, J Schürmann, S Yokura, Hirzebruch classes and motivic Chern classes for singular spaces, J. Topol. Anal. 2 (2010) 1–55
  • J-P Brasselet, M-H Schwartz, Sur les classes de Chern d'un ensemble analytique complexe, from: “The Euler–Poincaré characteristic”, Astérisque 82, Soc. Math. France (1981) 93–147
  • S E Cappell, A Libgober, L G Maxim, J L Shaneson, Hodge genera of algebraic varieties, II, Math. Ann. 345 (2009) 925–972
  • S E Cappell, L Maxim, J Schürmann, J L Shaneson, Equivariant characteristic classes of complex algebraic varieties, to appear in Comm. Pure Appl. Math.
  • S E Cappell, L Maxim, J Schürmann, J L Shaneson, Characteristic classes of complex hypersurfaces, Adv. Math. 225 (2010) 2616–2647
  • S E Cappell, L Maxim, J Schürmann, J L Shaneson, S Yokura, Characteristic classes of symmetric products of complex quasi-projective varieties
  • S E Cappell, L Maxim, J L Shaneson, Hodge genera of algebraic varieties I, Comm. Pure Appl. Math. 61 (2008) 422–449
  • S E Cappell, J L Shaneson, Stratifiable maps and topological invariants, J. Amer. Math. Soc. 4 (1991) 521–551
  • S S Chern, F Hirzebruch, J-P Serre, On the index of a fibered manifold, Proc. Amer. Math. Soc. 8 (1957) 587–596
  • A Craw, An introduction to motivic integration, from: “Strings and geometry”, (M Douglas, J Gauntlett, M Gross, editors), Clay Math. Proc. 3, Amer. Math. Soc. (2004) 203–225
  • J Denef, F Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math. 135 (1999) 201–232
  • J Denef, F Loeser, Geometry on arc spaces of algebraic varieties, from: “European Congress of Mathematics, Vol. I (Barcelona, 2000)”, (C Casacuberta, R M Miró-Roig, J Verdera, S Xambó-Descamps, editors), Progr. Math. 201, Birkhäuser, Basel (2001) 327–348
  • A W M Dress, Notes on the theory of representations of finite groups. Part I: The Burnside ring of a finite group and some AGN-applications, Universität Bielefeld, Fakultät für Mathematik (1971) With the aid of lecture notes, taken by M Küchler
  • A W M Dress, Contributions to the theory of induced representations, from: “Algebraic $K$–theory, II: “Classical” algebraic $K$–theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, WA, 1972)”, (H Bass, editor), Lecture Notes in Math. 342, Springer, Berlin (1973) 183–240
  • D A Edwards, Étale homotopy theory and shape, from: “Algebraic and geometrical methods in topology (Conf. Topological Methods in Algebraic Topology, State Univ. New York, Binghamton, NY, 1973)”, (L F McAuley, editor), Lecture Notes in Math. 428, Springer, Berlin (1974) 58–107
  • L Ernstr öm, S Yokura, Bivariant Chern–Schwartz–MacPherson classes with values in Chow groups, Selecta Math. 8 (2002) 1–25
  • L Ernstr öm, S Yokura, Addendum to: “Bivariant Chern–Schwartz–MacPherson classes with values in Chow groups” [Ernstrom-Yokura1?], Selecta Math. 10 (2004) 29–35
  • R H Fox, On shape, Fund. Math. 74 (1972) 47–71
  • J H G Fu, C McCrory, Stiefel–Whitney classes and the conormal cycle of a singular variety, Trans. Amer. Math. Soc. 349 (1997) 809–835
  • W Fulton, Intersection theory, Ergeb. Math. Grenzgeb. 2, Springer, Berlin (1984)
  • W Fulton, R MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31, no. 243, Amer. Math. Soc. (1981)
  • E Getzler, Resolving mixed Hodge modules on configuration spaces, Duke Math. J. 96 (1999) 175–203
  • M Goresky, R MacPherson, Intersection homology theory, Topology 19 (1980) 135–162
  • W Gottschalk, Some general dynamical notions, from: “Recent advances in topological dynamics (Proc. Conf. Topological Dynamics, Yale Univ., New Haven, CT, 1972; in honor of Gustav Arnold Hedlund)”, (A Beck, editor), Lecture Notes in Math. 318, Springer, Berlin (1973) 120–125
  • M Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. 1 (1999) 109–197
  • M Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps: I, Math. Phys. Anal. Geom. 2 (1999) 323–415
  • A Grothendieck, Récoltes et semailles, réflexions et témoignages sur un passé de mathématicien (1985) Available at \setbox0\makeatletter\@url http://www.math.jussieu.fr/~leila/grothendieckcircle/recoltesetc.php {\unhbox0
  • A Grothendieck, Technique de descente et théorèmes d'existence en géométrie algébrique, II: Le théorème d'existence en théorie formelle des modules, from: “Séminaire Bourbaki, Vol. 5”, Soc. Math. France (1995) Exp. No. 195, 369–390
  • F Hirzebruch, Topological methods in algebraic geometry, third edition, Grund. Math. Wiss. 131, Springer, New York (1966) New appendix and translation by R L E Schwarzenberger, with an additional section by A Borel
  • F Hirzebruch, T Berger, R Jung, Manifolds and modular forms, Aspects of Math. E20, Friedr. Vieweg & Sohn, Braunschweig (1992) With appendices by N-P Skoruppa and by P Baum
  • K Kodaira, A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967) 207–215
  • M Kontsevich, Motivic integration, Lecture at Orsay (1995)
  • M Kwieciński, Formule du produit pour les classes caractéristiques de Chern–Schwartz–MacPherson et homologie d'intersection, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) 625–628
  • M Kwieciński, S Yokura, Product formula for twisted MacPherson classes, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992) 167–171
  • M Levine, F Morel, Algebraic cobordism, Springer Monogr. in Math., Springer, Berlin (2007)
  • M Levine, R Pandharipande, Algebraic cobordism revisited, Invent. Math. 176 (2009) 63–130
  • E Looijenga, Motivic measures, from: “Séminaire Bourbaki, Vol. 1999/2000”, Astérisque 276 (2002) 267–297
  • R D MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. 100 (1974) 423–432
  • R D MacPherson, Characteristic classes for singular varieties, from: “Proceedings of the Ninth Brazilian Mathematical Colloquium (Poços de Caldas, 1973), Vol. II (Portuguese)”, Inst. Mat. Pura Apl., São Paulo (1977) 321–327
  • S Mardešić, J Segal, Shape theory: The inverse system approach, North-Holland Math. Library 26, North-Holland, Amsterdam (1982)
  • L Maxim, M Saito, J Schürmann, Symmetric products of mixed Hodge modules, J. Math. Pures Appl. 96 (2011) 462–483
  • L Maxim, J Schürmann, Twisted genera of symmetric products, Selecta Math. 18 (2012) 283–317
  • T Ohmoto, Equivariant Chern classes of singular algebraic varieties with group actions, Math. Proc. Cambridge Philos. Soc. 140 (2006) 115–134
  • T Ohmoto, Generating functions of orbifold Chern classes I: Symmetric products, Math. Proc. Cambridge Philos. Soc. 144 (2008) 423–438
  • B Poonen, The Grothendieck ring of varieties is not a domain, Math. Res. Lett. 9 (2002) 493–497
  • C Sabbah, Espaces conormaux bivariants, PhD thesis, Université Paris (1986)
  • M Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990) 221–333
  • J Schürmann, A general construction of partial Grothendieck transformations
  • J Schürmann, A generalized Verdier-type Riemann–Roch theorem for Chern–Schwartz–MacPherson classes
  • J Schürmann, Nearby cycles and characteristic classes of singular spaces
  • J Schürmann, Characteristic classes of mixed Hodge modules, from: “Topology of stratified spaces”, (G Friedman, E Hunsicker, A Libgober, L Maxim, editors), Math. Sci. Res. Inst. Publ. 58, Cambridge Univ. Press (2011) 419–470
  • J Schürmann, S Yokura, Motivic bivariant characteristic classes
  • J Schürmann, S Yokura, A survey of characteristic classes of singular spaces, from: “Singularity theory”, (D Chéniot, N Dutertre, C Murolo, D Trotman, A Pichon, editors), World Sci. Publ., Hackensack, NJ (2007) 865–952
  • M-H Schwartz, Classes caractéristiques définies par une stratification d'une variété analytique complexe. I, C. R. Acad. Sci. Paris 260 (1965) 3262–3264
  • M-H Schwartz, Classes et caractères de Chern–Mather des espaces linéaires, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982) 399–402
  • D Sullivan, Combinatorial invariants of analytic spaces, from: “Proceedings of Liverpool Singularities–-Symposium, I (1969/70)”, (C T C Wall, editor), Springer, Berlin (1971) 165–168
  • W Veys, Arc spaces, motivic integration and stringy invariants, from: “Singularity theory and its applications”, (S Izumiya, G Ishikawa, H Tokunaga, I Shimada, T Sano, editors), Adv. Stud. Pure Math. 43, Math. Soc. Japan (2006) 529–572
  • J Woolf, Witt groups of sheaves on topological spaces, Comment. Math. Helv. 83 (2008) 289–326
  • S Yokura, Chern classes of proalgebraic varieties and motivic measures
  • S Yokura, On Cappell–Shaneson's homology $L$–classes of singular algebraic varieties, Trans. Amer. Math. Soc. 347 (1995) 1005–1012
  • S Yokura, A singular Riemann–Roch for Hirzebruch characteristics, from: “Singularities Symposium–-Łojasiewicz 70 (Kraków, 1996; Warsaw, 1996)”, (B Jakubczyk, W Pawłucki, J Stasica, editors), Banach Center Publ. 44, Polish Acad. Sci., Warsaw (1998) 257–268
  • S Yokura, On a Verdier-type Riemann–Roch for Chern–Schwartz–MacPherson class, Topology Appl. 94 (1999) 315–327 Special issue in memory of B J Ball
  • S Yokura, On the uniqueness problem of bivariant Chern classes, Doc. Math. 7 (2002) 133–142
  • S Yokura, On Ginzburg's bivariant Chern classes, Trans. Amer. Math. Soc. 355 (2003) 2501–2521
  • S Yokura, Quasi-bivariant Chern classes obtained by resolutions of singularities, Rep. Fac. Sci. Kagoshima Univ. (2003) 17–28
  • S Yokura, Mackey functors on provarieties, from: “Real and complex singularities”, (J-P Brasselet, M A Soares Ruas, editors), Trends Math., Birkhäuser, Basel (2007) 343–359
  • S Yokura, Motivic Milnor classes, J. Singul. 1 (2010) 39–59
  • S Yokura, Motivic characteristic classes, from: “Topology of stratified spaces”, (G Friedman, E Hunsicker, A Libgober, L Maxim, editors), Math. Sci. Res. Inst. Publ. 58, Cambridge Univ. Press (2011) 375–418
  • B Youssin, Witt groups of derived categories, $K$–Theory 11 (1997) 373–395
  • J Zhou, Classes de Chern en théorie bivariante, PhD thesis, Université Aix-Marseille (1995)
  • J Zhou, Morphisme cellulaire et classes de Chern bivariantes, Ann. Fac. Sci. Toulouse Math. 9 (2000) 161–192