Algebraic & Geometric Topology

Locally symmetric spaces and $K$–theory of number fields

Thilo Kuessner

Full-text: Open access

Abstract

For a closed locally symmetric space M=ΓGK and a representation ρ:G GL(N,) we consider the pushforward of the fundamental class in H(BGL(¯)) and a related invariant in K(¯). We discuss the nontriviality of this invariant and we generalize the construction to cusped locally symmetric spaces of –rank one.

Article information

Source
Algebr. Geom. Topol., Volume 12, Number 1 (2012), 155-213.

Dates
Received: 15 November 2010
Revised: 18 November 2011
Accepted: 18 November 2011
First available in Project Euclid: 19 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1513715336

Digital Object Identifier
doi:10.2140/agt.2012.12.155

Mathematical Reviews number (MathSciNet)
MR2916273

Zentralblatt MATH identifier
1271.57062

Subjects
Primary: 57R19: Algebraic topology on manifolds 53C35: Symmetric spaces [See also 32M15, 57T15] 57M50: Geometric structures on low-dimensional manifolds
Secondary: 11R70: $K$-theory of global fields [See also 19Fxx] 22E46: Semisimple Lie groups and their representations

Keywords
symmetric spaces algebraic $K$–theory volume Borel class

Citation

Kuessner, Thilo. Locally symmetric spaces and $K$–theory of number fields. Algebr. Geom. Topol. 12 (2012), no. 1, 155--213. doi:10.2140/agt.2012.12.155. https://projecteuclid.org/euclid.agt/1513715336


Export citation

References

  • J F Adams, Lectures on exceptional Lie groups, (Z Mahmud and M Mimura, editors), Chicago Lectures in Math., Univ. of Chicago Press (1996)
  • R Benedetti, C Petronio, Lectures on hyperbolic geometry, Universitext, Springer, Berlin (1992)
  • A Borel, Compact Clifford–Klein forms of symmetric spaces, Topology 2 (1963) 111–122
  • A Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup. 7 (1974) 235–272
  • N Bourbaki, Éléments de mathématique, Fasc. XXXVIII: Groupes et algèbres de Lie, Chapitre VII: Sous-algèbres de Cartan, éléments réguliers, Chapitre VIII: Algèbres de Lie semi-simples déployées, Actualités Sci. et Ind. 1364, Hermann, Paris (1975)
  • J I Burgos Gil, The regulators of Beilinson and Borel, CRM Monogr. Series 15, Amer. Math. Soc. (2002)
  • H Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, from: “Colloque de topologie (espaces fibrés), Bruxelles, 1950”, Georges Thone, Liège (1951) 57–71
  • J L Cisneros-Molina, J D S Jones, The Bloch invariant as a characteristic class in $B({\rm SL}\sb 2({\mathbb C}),{\mathfrak T})$, Homology Homotopy Appl. 5 (2003) 325–344
  • J L Dupont, Simplicial de Rham cohomology and characteristic classes of flat bundles, Topology 15 (1976) 233–245
  • J L Dupont, C H Sah, Scissors congruences, II, J. Pure Appl. Algebra 25 (1982) 159–195
  • P Eberlein, Lattices in spaces of nonpositive curvature, Ann. of Math. 111 (1980) 435–476
  • S Eilenberg, Singular homology theory, Ann. of Math. 45 (1944) 407–447
  • S Eilenberg, S Mac Lane, Relations between homology and homotopy groups of spaces, Ann. of Math. 46 (1945) 480–509
  • W Fulton, J Harris, Representation theory: A first course, Graduate Texts in Math. 129, Springer, New York (1991)
  • A Goncharov, Volumes of hyperbolic manifolds and mixed Tate motives, J. Amer. Math. Soc. 12 (1999) 569–618
  • J-C Hausmann, P Vogel, The plus construction and lifting maps from manifolds, from: “Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1”, (R J Milgram, editor), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc., Providence, R.I. (1978) 67–76
  • S Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics XII, Academic Press, New York (1962)
  • M Karoubi, Homologie cyclique et $K$–théorie, Astérisque 149, Soc. Math. France (1987)
  • A M Macbeath, Commensurability of co-compact three-dimensional hyperbolic groups, Duke Math. J. 50 (1983) 1245–1253
  • M Matthey, W Pitsch, J Scherer, Generalized orientations and the Bloch invariant, J $K$–Theory 6 (2010) 241–261
  • J P May, A concise course in algebraic topology, Chicago Lectures in Math., Univ.of Chicago Press (1999)
  • J Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. 65 (1957) 357–362
  • J Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965) 211–264
  • W D Neumann, J Yang, Bloch invariants of hyperbolic $3$–manifolds, Duke Math. J. 96 (1999) 29–59
  • A Onishchik, E Vinberg (editors), Lie groups and Lie algebras, III: Structure of Lie groups and Lie algebras, Encyclopaedia of Math. Sciences 41, Springer, Berlin (1994)
  • J Rosenberg, Algebraic $K$–theory and its applications, Graduate Texts in Math. 147, Springer, New York (1994)
  • A A Suslin, $K\sb 3$ of a field, and the Bloch group, Trudy Mat. Inst. Steklov. 183 (1990) 180–199, 229 In Russian; translated in Proc. Steklov Inst. Math. 4 (1991) 217–239
  • C K Zickert, The volume and Chern–Simons invariant of a representation, Duke Math. J. 150 (2009) 489–532