Algebraic & Geometric Topology

Higher rank lattices are not coarse median

Thomas Haettel

Full-text: Access denied (no subscription detected)

However, an active subscription may be available with MSP at msp.org/agt.

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We show that symmetric spaces and thick affine buildings which are not of spherical type A1r have no coarse median in the sense of Bowditch. As a consequence, they are not quasi-isometric to a CAT(0) cube complex, answering a question of Haglund. Another consequence is that any lattice in a simple higher rank group over a local field is not coarse median.

Article information

Source
Algebr. Geom. Topol., Volume 16, Number 5 (2016), 2895-2910.

Dates
Received: 23 June 2015
Revised: 5 January 2016
Accepted: 6 February 2016
First available in Project Euclid: 16 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.agt/1510841233

Digital Object Identifier
doi:10.2140/agt.2016.16.2895

Mathematical Reviews number (MathSciNet)
MR3572353

Zentralblatt MATH identifier
1367.20045

Subjects
Primary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx] 51E24: Buildings and the geometry of diagrams 51F99: None of the above, but in this section 53C35: Symmetric spaces [See also 32M15, 57T15]

Keywords
median algebra coarse geometry quasi-isometry higher rank lattice symmetric space building CAT (0) cube complex

Citation

Haettel, Thomas. Higher rank lattices are not coarse median. Algebr. Geom. Topol. 16 (2016), no. 5, 2895--2910. doi:10.2140/agt.2016.16.2895. https://projecteuclid.org/euclid.agt/1510841233


Export citation

References

  • J,A Behrstock, Y,N Minsky, Dimension and rank for mapping class groups, Ann. of Math. 167 (2008) 1055–1077
  • J,A Behrstock, Y,N Minsky, Centroids and the rapid decay property in mapping class groups, J. Lond. Math. Soc. 84 (2011) 765–784
  • B,H Bowditch, Coarse median spaces and groups, Pacific J. Math. 261 (2013) 53–93
  • B,H Bowditch, Invariance of coarse median spaces under relative hyperbolicity, Math. Proc. Cambridge Philos. Soc. 154 (2013) 85–95
  • B,H Bowditch, Embedding median algebras in products of trees, Geom. Dedicata 170 (2014) 157–176
  • B,H Bowditch, Some properties of median metric spaces, Groups Geom. Dyn. 10 (2016) 279–317
  • I Chatterji, Property (RD) for cocompact lattices in a finite product of rank one Lie groups with some rank two Lie groups, Geom. Dedicata 96 (2003) 161–177
  • I Chatterji, C Druţu, F Haglund, Kazhdan and Haagerup properties from the median viewpoint, Adv. Math. 225 (2010) 882–921
  • I Chatterji, T Fernós, A Iozzi, The median class and superrigidity of actions on $\rm CAT(0)$ cube complexes, J. Topol. 9 (2016) 349–400
  • I Chatterji, G Niblo, From wall spaces to $\rm CAT(0)$ cube complexes, Internat. J. Algebra Comput. 15 (2005) 875–885
  • I Chatterji, K Ruane, Some geometric groups with rapid decay, Geom. Funct. Anal. 15 (2005) 311–339
  • V Chepoi, Graphs of some ${\rm CAT}(0)$ complexes, Adv. in Appl. Math. 24 (2000) 125–179
  • D,B,A Epstein, J,W Cannon, D,F Holt, S,V,F Levy, M,S Paterson, W,P Thurston, Word processing in groups, Jones and Bartlett, Boston (1992)
  • É Ghys, P de la Harpe, Espaces métriques hyperboliques, from “Sur les groupes hyperboliques d'après Mikhael Gromov”, Progr. Math. 83, Birkhäuser, Boston (1990) 27–45
  • F Haglund, D,T Wise, A combination theorem for special cube complexes, Ann. of Math. 176 (2012) 1427–1482
  • U Hammenstädt, Geometry of the mapping class groups, III: Quasi-isometric rigidity
  • W Hurewicz, H Wallman, Dimension theory, Princeton Mathematical Series 4, Princeton Univ. Press (1941)
  • B Kleiner, B Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. 86 (1997) 115–197
  • L Kramer, On the local structure and the homology of ${\rm CAT}(\kappa)$ spaces and Euclidean buildings, Adv. Geom. 11 (2011) 347–369
  • V Lafforgue, Une démonstration de la conjecture de Baum–Connes pour les groupes réductifs sur un corps $p$–adique et pour certains groupes discrets possédant la propriété (T), C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 439–444
  • V Lafforgue, A proof of property (RD) for cocompact lattices of ${\rm SL}(3,\mathbf R)$ and ${\rm SL}(3,\mathbf C)$, J. Lie Theory 10 (2000) 255–267
  • D,V Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, 843, Amer. Math. Soc. (2006)
  • J Ramagge, G Robertson, T Steger, A Haagerup inequality for $\tilde A\sb 1\times\tilde A\sb 1$ and $\tilde A\sb 2$ buildings, Geom. Funct. Anal. 8 (1998) 702–731