Open Access
April 2018 Torsion classes generated by silting modules
Simion Breaz, Jan Žemlička
Author Affiliations +
Ark. Mat. 56(1): 15-32 (April 2018). DOI: 10.4310/ARKIV.2018.v56.n1.a2

Abstract

We study the classes of modules which are generated by a silting module. In the case of either hereditary or perfect rings, it is proved that these are exactly the torsion $\mathcal{T}$ such that the regular module has a special $\mathcal{T}$-preenvelope. In particular, every torsion-enveloping class in $\mathrm{Mod}\textrm{-}R$ are of the form $\mathrm{Gen}(T)$ for a minimal silting module $T$. For the dual case, we obtain for general rings that the covering torsion-free classes of modules are exactly the classes of the form $\mathrm{Cogen}(T)$, where $T$ is a cosilting module.

Citation

Download Citation

Simion Breaz. Jan Žemlička. "Torsion classes generated by silting modules." Ark. Mat. 56 (1) 15 - 32, April 2018. https://doi.org/10.4310/ARKIV.2018.v56.n1.a2

Information

Received: 2 May 2017; Revised: 28 July 2017; Published: April 2018
First available in Project Euclid: 19 June 2019

zbMATH: 06869099
MathSciNet: MR3800456
Digital Object Identifier: 10.4310/ARKIV.2018.v56.n1.a2

Subjects:
Primary: 16D90 , 16E30 , 18G15

Keywords: cosilting , precovering class , preenveloping class , silting , torsion theory

Rights: Copyright © 2018 Institut Mittag-Leffler

Vol.56 • No. 1 • April 2018
Back to Top