Arkiv för Matematik

  • Ark. Mat.
  • Volume 51, Number 2 (2013), 345-361.

Duality and distance formulas in spaces defined by means of oscillation

Karl-Mikael Perfekt

Full-text: Open access

Abstract

For the classical space of functions with bounded mean oscillation, it is well known that $\operatorname{VMO}^{**} = \operatorname{BMO}$ and there are many characterizations of the distance from a function f in $\operatorname{BMO}$ to $\operatorname{VMO}$. When considering the Bloch space, results in the same vein are available with respect to the little Bloch space. In this paper such duality results and distance formulas are obtained by pure functional analysis. Applications include general Möbius invariant spaces such as QK-spaces, weighted spaces, Lipschitz–Hölder spaces and rectangular $\operatorname{BMO}$ of several variables.

Article information

Source
Ark. Mat., Volume 51, Number 2 (2013), 345-361.

Dates
Received: 23 June 2011
Revised: 20 April 2012
First available in Project Euclid: 1 February 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907220

Digital Object Identifier
doi:10.1007/s11512-012-0175-7

Mathematical Reviews number (MathSciNet)
MR3090201

Zentralblatt MATH identifier
1283.46011

Rights
2012 © Institut Mittag-Leffler

Citation

Perfekt, Karl-Mikael. Duality and distance formulas in spaces defined by means of oscillation. Ark. Mat. 51 (2013), no. 2, 345--361. doi:10.1007/s11512-012-0175-7. https://projecteuclid.org/euclid.afm/1485907220


Export citation

References

  • Aleman, A. and Simbotin, A.-M., Estimates in Möbius invariant spaces of analytic functions, Complex Var. Theory Appl. 49 (2004), 487–510.
  • Anderson, J. M. and Duncan, J., Duals of Banach spaces of entire functions, Glasg. Math. J. 32 (1990), 215–220.
  • Arazy, J., Fisher, S. D. and Peetre, J., Möbius invariant function spaces, J. Reine Angew. Math. 363 (1985), 110–145.
  • Attele, K. R. M., Interpolating sequences for the derivatives of Bloch functions, Glasg. Math. J. 34 (1992), 35–41.
  • Axler, S. and Shapiro, J. H., Putnam’s theorem, Alexander’s spectral area estimate, and VMO, Math. Ann. 271 (1985), 161–183.
  • Bierstedt, K. D. and Summers, W. H., Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Ser. A 54 (1993), 70–79.
  • Bierstedt, K. D., Bonet, J. and Galbis, A., Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J. 40 (1993), 271–297.
  • Carmona, J. and Cufí, J., On the distance of an analytic function to VMO, J. Lond. Math. Soc. 34 (1986), 52–66.
  • Conway, J. B., A Course in Functional Analysis, 2nd ed., Graduate Texts in Mathematics 96, Springer, New York, 1990.
  • Czipszer, J. and Gehér, L., Extension of functions satisfying a Lipschitz condition, Acta Math. Acad. Sci. Hungar. 6 (1955), 213–220.
  • Dobrakov, I., On integration in Banach spaces. I, Czechoslovak Math. J. 20 (1970), 511–536.
  • Dobrakov, I., On integration in Banach spaces. II, Czechoslovak Math. J. 20 (1970), 680–695.
  • Dobrakov, I., On representation of linear operators on C0(T,X), Czechoslovak Math. J. 21 (1971), 13–30.
  • Essén, M. and Wulan, H., On analytic and meromorphic functions and spaces of QK-type, Illinois J. Math. 46 (2002), 1233–1258.
  • Ferguson, S. H. and Sadosky, C., Characterizations of bounded mean oscillation on the polydisk in terms of Hankel operators and Carleson measures, J. Anal. Math. 81 (2000), 239–267.
  • García, D., Maestre, M. and Rueda, P., Weighted spaces of holomorphic functions on Banach spaces, Studia Math. 138 (2000), 1–24.
  • Garnett, J. B., Bounded Analytic Functions, Revised 1st ed., Graduate Texts in Mathematics 236, Springer, New York, 2007.
  • Godefroy, G., Existence and uniqueness of isometric preduals: a survey, in Banach Space Theory (Iowa City, IA, 1987 ), Contemp. Math. 85, pp. 131–193, Amer. Math. Soc., Providence, RI, 1989.
  • Halmos, P. R., Measure Theory, Van Nostrand, New York, 1950.
  • Kalton, N. J., Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), 171–217.
  • Lacey, M. T., Terwilleger, E. and Wick, B. D., Remarks on product VMO, Proc. Amer. Math. Soc. 134 (2006), 465–474.
  • Maz′ya, V. G. and Shaposhnikova, T. O., Theory of Sobolev Multipliers, Grundlehren der Mathematischen Wissenschaften 337, Springer, Berlin, 2009.
  • Nara, C., Uniqueness of the predual of the Bloch space and its strongly exposed points, Illinois J. Math. 34 (1990), 98–107.
  • Rubel, L. A. and Shields, A. L., The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. Ser. A 11 (1970), 276–280.
  • Shields, A. L. and Williams, D. L., Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287–302.
  • Stegenga, D. A. and Stephenson, K., Sharp geometric estimates of the distance to VMOA, in The Madison Symposium on Complex Analysis (Madison, WI, 1991 ), Contemp. Math. 137, pp. 421–432, Amer. Math. Soc., Providence, RI, 1992.
  • Tjani, M., Distance of a Bloch function to the little Bloch space, Bull. Aust. Math. Soc. 74 (2006), 101–119.
  • Zinger, I., Linear functionals on the space of continuous mappings of a compact Hausdorff space into a Banach space, Rev. Roumaine Math. Pures Appl. 2 (1957), 301–315 (Russian).