Arkiv för Matematik

  • Ark. Mat.
  • Volume 51, Number 1 (2013), 185-196.

On the h-triangles of sequentially (Sr) simplicial complexes via algebraic shifting

Mohammad Reza Pournaki, Seyed Amin Seyed Fakhari, and Siamak Yassemi

Full-text: Open access

Abstract

Recently, Haghighi, Terai, Yassemi, and Zaare-Nahandi introduced the notion of a sequentially (Sr) simplicial complex. This notion gives a generalization of two properties for simplicial complexes: being sequentially Cohen–Macaulay and satisfying Serre’s condition (Sr). Let Δ be a (d−1)-dimensional simplicial complex with Γ(Δ) as its algebraic shifting. Also let (hi, j(Δ))0≤jid be the h-triangle of Δ and (hi, j(Γ(Δ)))0≤jid be the h-triangle of Γ(Δ). In this paper, it is shown that for a Δ being sequentially (Sr) and for every i and j with 0≤jir−1, the equality hi, j(Δ)=hi, j(Γ(Δ)) holds true.

Dedication

Dedicated with gratitude to our teacher and friend Jürgen Herzog on the occasion of his 70th birthday.

Article information

Source
Ark. Mat., Volume 51, Number 1 (2013), 185-196.

Dates
Received: 12 March 2011
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907201

Digital Object Identifier
doi:10.1007/s11512-011-0160-6

Mathematical Reviews number (MathSciNet)
MR3029342

Zentralblatt MATH identifier
1263.13022

Rights
2012 © Institut Mittag-Leffler

Citation

Pournaki, Mohammad Reza; Seyed Fakhari, Seyed Amin; Yassemi, Siamak. On the h -triangles of sequentially ( S r ) simplicial complexes via algebraic shifting. Ark. Mat. 51 (2013), no. 1, 185--196. doi:10.1007/s11512-011-0160-6. https://projecteuclid.org/euclid.afm/1485907201


Export citation

References

  • Björner, A. and Wachs, M. L., Shellable nonpure complexes and posets I, Trans. Amer. Math. Soc. 348 (1996), 1299–1327.
  • Bruns, W. and Herzog, J., Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1993.
  • Duval, A. M., Algebraic shifting and sequentially Cohen–Macaulay simplicial complexes, Electron. J. Combin. 3 (1996), Research Paper 21.
  • Duval, A. M. and Rose, L. L., Iterated homology of simplicial complexes, J. Algebraic Combin. 12 (2000), 279–294.
  • Fröberg, R., A note on the Stanley–Reisner ring of a join and of a suspension, Manuscripta Math. 60 (1988), 89–91.
  • Goodarzi, A., Pournaki, M. R., Seyed Fakhari, S. A. and Yassemi, S., On the h-vector of a simplicial complex with Serre’s condition, J. Pure Appl. Algebra 216 (2012), 91–94.
  • Haghighi, H., Terai, N., Yassemi, S. and Zaare-Nahandi, R., Sequentially Sr simplicial complexes and sequentially S2 graphs, Proc. Amer. Math. Soc. 139 (2011), 1993–2005.
  • Herzog, J. and Hibi, T., Monomial Ideals, Springer, London, 2011.
  • Hibi, T., Algebraic Combinatorics on Convex Polytopes, Carslaw Publications, Glebe, NSW, 1992.
  • Kalai, G., Algebraic shifting, in Computational Commutative Algebra and Combinatorics (Osaka, 1999 ), Adv. Stud. Pure Math. 33, pp. 121–163, Math. Soc. Japan, Tokyo, 2002.
  • Miller, E. and Sturmfels, B., Combinatorial Commutative Algebra, Springer, New York, 2005.
  • Murai, S. and Terai, N., h-vectors of simplicial complexes with Serre’s conditions, Math. Res. Lett. 16 (2009), 1015–1028.
  • Stanley, R. P., Combinatorics and Commutative Algebra, 2nd ed., Birkhäuser, Boston, MA, 1996.
  • Wachs, M. L., Whitney homology of semipure shellable posets, J. Algebraic Combin. 9 (1999), 173–207.