Arkiv för Matematik

  • Ark. Mat.
  • Volume 51, Number 1 (2013), 125-156.

A new generalization of the Lelong number

Aron Lagerberg

Full-text: Open access

Abstract

We will introduce a quantity which measures the singularity of a plurisubharmonic function φ relative to another plurisubharmonic function ψ, at a point a. We denote this quantity by νa, ψ(φ). It can be seen as a generalization of the classical Lelong number in a natural way: if ψ=(n−1)log| ⋅ −a|, where n is the dimension of the set where φ is defined, then νa, ψ(φ) coincides with the classical Lelong number of φ at the point a. The main theorem of this article says that the upper level sets of our generalized Lelong number, i.e. the sets of the form {z: νz, ψ(φ)≥c} where c>0, are in fact analytic sets, provided that the weightψ satisfies some additional conditions.

Article information

Source
Ark. Mat., Volume 51, Number 1 (2013), 125-156.

Dates
Received: 24 August 2010
Revised: 30 June 2011
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907200

Digital Object Identifier
doi:10.1007/s11512-011-0158-0

Mathematical Reviews number (MathSciNet)
MR3029340

Zentralblatt MATH identifier
1293.32039

Rights
2011 © Institut Mittag-Leffler

Citation

Lagerberg, Aron. A new generalization of the Lelong number. Ark. Mat. 51 (2013), no. 1, 125--156. doi:10.1007/s11512-011-0158-0. https://projecteuclid.org/euclid.afm/1485907200


Export citation

References

  • Berndtsson, B., The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. Inst. Fourier (Grenoble) 46 (1996), 1083–1094.
  • Berndtsson, B., Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann. Inst. Fourier (Grenoble) 56 (2006), 1633–1662.
  • Demailly, J.-P., Nombres de Lelong généralizés, théorèmes d’integralité et d’analyticité, Acta Math. 159 (1987), 153–169.
  • Demailly, J.-P. and Kollár, J., Semi-continuity of complex singularity exponent and Kähler–Einstein metrics on Fano-orbifolds, Ann. Sci. Éc. Norm. Super. 4 (2001), 525–556.
  • Hörmander, L., An Introduction to Complex Analysis in Several Variables, 3rd ed., North-Holland, Amsterdam, 1990.
  • Kiselman, C., Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math. 60 (1994), 173–197.
  • Lelong, P., Fonctions plurisousharmonique et formes differntielles positives, Gordon and Breach, Paris, 1968.
  • Rashkovskii, A., Relative types and extremal problems for plurisubharmonic functions, Int. Math. Res. Not. 2006 (2006), 76283.
  • Siu, Y. T., Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974), 53–156.
  • Skoda, H., Sous-ensembles analytiques d’ordre fini ou infini dans ℂn, Bull. Soc. Math. France 100 (1972), 353–408.