Arkiv för Matematik

  • Ark. Mat.
  • Volume 50, Number 2 (2012), 379-395.

Whitney coverings and the tent spaces T1, q(γ) for the Gaussian measure

Jan Maas, Jan Neerven, and Pierre Portal

Full-text: Open access

Abstract

We introduce a technique for handling Whitney decompositions in Gaussian harmonic analysis and apply it to the study of Gaussian analogues of the classical tent spaces T1, q of Coifman–Meyer–Stein.

Note

J. Maas was supported by Rubicon subsidy 680-50-0901 of the Netherlands Organisation for Scientific Research (NWO). J. van Neerven was supported by VICI subsidy 639.033.604 of the Netherlands Organisation for Scientific Research (NWO).

Article information

Source
Ark. Mat., Volume 50, Number 2 (2012), 379-395.

Dates
Received: 26 February 2010
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907174

Digital Object Identifier
doi:10.1007/s11512-010-0143-z

Mathematical Reviews number (MathSciNet)
MR2961328

Zentralblatt MATH identifier
1261.42038

Rights
2011 © Institut Mittag-Leffler

Citation

Maas, Jan; Neerven, Jan; Portal, Pierre. Whitney coverings and the tent spaces T 1, q ( γ ) for the Gaussian measure. Ark. Mat. 50 (2012), no. 2, 379--395. doi:10.1007/s11512-010-0143-z. https://projecteuclid.org/euclid.afm/1485907174


Export citation

References

  • Carbonaro, A., Mauceri, G. and Meda, S., BMO and H1 for certain locally doubling metric measure spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. 8 (2009), 543–582.
  • Carbonaro, A., Mauceri, G. and Meda, S., BMO and H1 for certain locally doubling metric measure spaces of finite measure, Colloq. Math. 118 (2010), 13–41.
  • Coifman, R., Meyer, Y. and Stein, E. M., Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304–335.
  • Harboure, E., Torrea, J. L. and Viviani, B., A vector-valued approach to tent spaces, J. Anal. Math. 56 (1991), 125–140.
  • Mauceri, G. and Meda, S., BMO and H1 for the Ornstein–Uhlenbeck operator, J. Funct. Anal. 252 (2007), 278–313.
  • Russ, E., The atomic decomposition for tent spaces on spaces of homogeneous type, in CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics” (Murramarang, 2006 ), Proc. Centre Math. Appl. Austral. Nat. Univ. 42, pp. 125–135, Australian National University, Canberra, 2007.
  • Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.