Arkiv för Matematik

  • Ark. Mat.
  • Volume 50, Number 1 (2012), 111-134.

Quasiconformality, homeomorphisms between metric measure spaces preserving quasiminimizers, and uniform density property

Riikka Korte, Niko Marola, and Nageswari Shanmugalingam

Full-text: Open access


We characterize quasiconformal mappings as those homeomorphisms between two metric measure spaces of locally bounded geometry that preserve a class of quasiminimizers. We also consider quasiconformal mappings and densities in metric spaces and give a characterization of quasiconformal mappings in terms of the uniform density property introduced by Gehring and Kelly.


N. Shanmugalingam was supported in part by the Taft Foundation of the University of Cincinnati.

Article information

Ark. Mat., Volume 50, Number 1 (2012), 111-134.

Received: 15 January 2010
Revised: 23 August 2010
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

2011 © Institut Mittag-Leffler


Korte, Riikka; Marola, Niko; Shanmugalingam, Nageswari. Quasiconformality, homeomorphisms between metric measure spaces preserving quasiminimizers, and uniform density property. Ark. Mat. 50 (2012), no. 1, 111--134. doi:10.1007/s11512-010-0137-x.

Export citation


  • Balogh, Z. M., Koskela, P. and Rogovin, S., Absolute continuity of quasiconformal mappings on curves, Geom. Funct. Anal. 17 (2007), 645–664.
  • Björn, A., A weak Kellogg property for quasiminimizers, Comment. Math. Helv. 81 (2006), 809–825.
  • Björn, A., Removable singularities for bounded p-harmonic and quasi(super)harmonic functions on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 71–95.
  • Björn, A., Björn, J. and Shanmugalingam, N., Quasicontinuity of Newton–Sobolev functions and density of Lipschitz functions on metric spaces, Houston J. Math. 34 (2008), 1197–1211.
  • Capogna, L. and Cowling, M., Conformality and Q-harmonicity in Carnot groups, Duke Math. J. 135 (2006), 455–479.
  • Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 428–517.
  • Constantinescu, C. and Cornea, A., Compactifications of harmonic spaces, Nagoya Math. J. 25 (1965), 1–57.
  • Danielli, D., Garofalo, N. and Marola, N., Local behavior of p-harmonic Green’s functions in metric spaces, Potential Anal. 32 (2010), 343–362.
  • DiBenedetto, E. and Trudinger, N. S., Harnack inequalities for quasiminima of variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 295–308.
  • Gehring, F. W. and Haahti, H., The transformations which preserve the harmonic functions, Ann. Acad. Sci. Fenn. Ser. A I. Math. 293 (1960), 1–12.
  • Gehring, F. W. and Kelly, J. C., Quasi-conformal mappings and Lebesgue density, in Discontinuous Groups and Riemann Surfaces (College Park, MD, 1973 ), Ann. of Math. Studies 79, pp. 171–179, Princeton Univ. Press, Princeton, NJ, 1974.
  • Giaquinta, M. and Giusti, E., On the regularity of the minima of variational integrals, Acta Math. 148 (1982), 31–46.
  • Giaquinta, M. and Giusti, E., Quasi-minima, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 79–107.
  • Granlund, S., Lindqvist, P. and Martio, O., Conformally invariant variational integrals, Trans. Amer. Math. Soc. 277 (1983), 43–73.
  • Hajłasz, P. and Koskela, P., Sobolev met Poincaré, Mem. Amer. Math. Soc. 145:688 (2000), 1–101.
  • Heinonen, J., Kilpeläinen, T. and Martio, O., Harmonic morphisms in nonlinear potential theory, Nagoya Math. J. 125 (1992), 115–140.
  • Heinonen, J., Kilpeläinen, T. and Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, 2nd ed., Dover, Mineola, NY, 2006.
  • Heinonen, J. and Koskela, P., Definitions of quasiconformality, Invent. Math. 120 (1995), 61–79.
  • Heinonen, J. and Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61.
  • Heinonen, J., Koskela, P., Shanmugalingam, N. and Tyson, J. T., Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87–139.
  • Herron, D. A. and Koskela, P., Poincaré domains and quasiconformal mappings, Sibirsk. Mat. Zh. 36 (1995), 1416–1434 (Russian). English transl.: Siberian Math. J. 36 (1995), 1232–1246.
  • Holopainen, I. and Shanmugalingam, N., Singular functions on metric measure spaces, Collect. Math. 53 (2002), 313–332.
  • Kallunki, S. [Rogovin, S.] and Shanmugalingam, N., Modulus and continuous capacity, Ann. Acad. Sci. Fenn. Math. 26 (2001), 455–464.
  • Kinnunen, J., Korte, R., Shanmugalingam, N. and Tuominen, H., A characterization of Newtonian functions with zero boundary values, Preprint, 2009.
  • Kinnunen, J. and Latvala, V., Lebesgue points for Sobolev functions on metric spaces, Rev. Mat. Iberoam. 18 (2002), 685–700.
  • Kinnunen, J. and Shanmugalingam, N., Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), 401–423.
  • Korte, R., Geometric implications of the Poincaré inequality, Results Math. 50 (2007), 93–107.
  • Koskela, P. and MacManus, P., Quasiconformal mappings and Sobolev spaces, Studia Math. 131 (1998), 1–17.
  • Mattila, P., Geometry of Sets and Measures in Euclidean Spaces, Cambridge Studies Advanced Mathematics 44, Cambridge University Press, Cambridge, 1995.
  • Shanmugalingam, N., Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam. 16 (2000), 243–279.
  • Shanmugalingam, N., Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), 1021–1050.
  • Shanmugalingam, N., Some convergence results for p-harmonic functions on metric measure spaces, Proc. London Math. Soc. 87 (2003), 226–246.
  • Väisälä, J., Lectures onn-dimensional Quasiconformal Mappings, Lecture Notes in Math. 229, Springer, Berlin–Heidelberg, 1971.