Arkiv för Matematik

  • Ark. Mat.
  • Volume 49, Number 2 (2011), 199-215.

J-embeddable reducible surfaces

Alberto Alzati and Edoardo Ballico

Full-text: Open access

Abstract

Here we classify J-embeddable surfaces, i.e. surfaces whose secant varieties have dimension at most 4, when the surfaces have two components at most.

Article information

Source
Ark. Mat., Volume 49, Number 2 (2011), 199-215.

Dates
Received: 26 August 2009
Revised: 19 December 2009
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907142

Digital Object Identifier
doi:10.1007/s11512-010-0125-1

Mathematical Reviews number (MathSciNet)
MR2826941

Zentralblatt MATH identifier
1253.14050

Rights
2010 © Institut Mittag-Leffler

Citation

Alzati, Alberto; Ballico, Edoardo. J -embeddable reducible surfaces. Ark. Mat. 49 (2011), no. 2, 199--215. doi:10.1007/s11512-010-0125-1. https://projecteuclid.org/euclid.afm/1485907142


Export citation

References

  • Ådlandsvik, B., Joins and higher secant varieties, Math. Scand. 62 (1987), 213–222.
  • Ådlandsvik, B., Varieties with an extremal number of degenerate higher secant varieties, J. Reine Angew. Math. 392 (1988), 16–26.
  • Dale, M., Severi’s theorem on the Veronese-surface, J. London Math. Soc. 32 (1985), 419–425.
  • Johnson, K. W., Immersion and embedding of projective varieties, Acta Math. 140 (1981), 49–74.
  • Zak, F. L., Tangents and Secants of Algebraic Varieties, Translations of Mathematical Monographs 127, Amer. Math. Soc., Providence, RI, 1993.