Arkiv för Matematik

Long and short paths in uniform random recursive dags

Luc Devroye and Svante Janson

Full-text: Open access

Abstract

In a uniform random recursive k-directed acyclic graph, there is a root, 0, and each node in turn, from 1 to n, chooses k uniform random parents from among the nodes of smaller index. If Sn is the shortest path distance from node n to the root, then we determine the constant σ such that Sn/log nσ in probability as n→∞. We also show that max 1≤inSi/log nσ in probability.

Note

L. Devroye’s research was sponsored by NSERC Grant A3456. The research was mostly done at the Institute Mittag-Leffler during the programme Discrete Probability held in 2009.

Article information

Source
Ark. Mat., Volume 49, Number 1 (2011), 61-77.

Dates
Received: 1 June 2009
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907129

Digital Object Identifier
doi:10.1007/s11512-009-0118-0

Mathematical Reviews number (MathSciNet)
MR2784257

Zentralblatt MATH identifier
1230.60092

Rights
2010 © Institut Mittag-Leffler

Citation

Devroye, Luc; Janson, Svante. Long and short paths in uniform random recursive dags. Ark. Mat. 49 (2011), no. 1, 61--77. doi:10.1007/s11512-009-0118-0. https://projecteuclid.org/euclid.afm/1485907129


Export citation

References

  • Albert, R. and Barabasi, A., Emergence of scaling in random networks, Science 286 (1999), 509–512.
  • Albert, R., Barabasi, A. and Jeong, H., Diameter of the World-Wide Web, Nature 401 (1999), 130–131.
  • Biggins, J. D., Chernoff’s theorem in the branching random walk, J. Appl. Probab. 14 (1977), 630–636.
  • Biggins, J. D. and Grey, D. R., A note on the growth of random trees, Statist. Probab. Lett. 32 (1997), 339–342.
  • Broutin, N. and Devroye, L., Large deviations for the weighted height of an extended class of trees, Algorithmica 46 (2006), 271–297.
  • Codenotti, B., Gemmell, P. and Simon, J., Average circuit depth and average communication complexity, in Third European Symposium on Algorithms, pp. 102–112, Springer, Berlin, 1995.
  • Devroye, L., A note on the height of binary search trees, J. Assoc. Comput. Mach. 33 (1986), 489–498.
  • Devroye, L., Branching processes in the analysis of the heights of trees, Acta Inform. 24 (1987), 277–298.
  • Devroye, L., Applications of the theory of records in the study of random trees, Acta Inform. 26 (1988), 123–130.
  • Devroye, L., Branching processes and their applications in the analysis of tree structures and tree algorithms, in Probabilistic Methods for Algorithmic Discrete Mathematics, Algorithms Combin. 16, pp. 49–314, Springer, Berlin, 1998.
  • Devroye, L., Universal limit laws for depths in random trees, SIAM J. Comput. 28 (1999), 409–432.
  • Díaz, J., Serna, M. J., Spirakis, P., Toran, J. and Tsukiji, T., On the expected depth of Boolean circuits, Technical Report LSI-94-7-R, Universitat Politecnica de Catalunya, Departament de Llenguatges i Sistemes Informàtics, Barcelona, 1994.
  • Dijkstra, E. W., A note on two problems in connexion with graphs, Numer. Math. 1 (1959), 269–271.
  • Dondajewski, M. and Szymański, J., On the distribution of vertex-degrees in a strata of a random recursive tree, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982), 205–209.
  • Drmota, M., Janson, S. and Neininger, R., A functional limit theorem for the profile of search trees, Ann. Appl. Probab. 18 (2008), 288–333.
  • D’Souza, R. M., Krapivsky, P. L. and Moore, C., The power of choice in growing trees, Eur. Phys. J. B 59 (2007), 535–543.
  • Fuchs, M., Hwang, H.-K. and Neininger, R., Profiles of random trees: Limit theorems for random recursive trees and binary search trees, Algorithmica 46 (2006), 367–407.
  • Fuk, D. K. and Nagaev, S. V., Probability inequalities for sums of independent random variables, Teor. Veroyatnost. i Primenen. 16 (1971), 660–675 (Russian). English transl.: Theory Probab. Appl. 16 (1971), 643–660.
  • Gastwirth, J. L., A probability model of a pyramid scheme, Amer. Statist. 31 (1977), 79–82.
  • Glick, N., Breaking records and breaking boards, Amer. Math. Monthly 85 (1978), 2–26.
  • Hwang, H.-K., Profiles of random trees: plane-oriented recursive trees (Extended Abstract), in 2005 International Conference on Analysis of Algorithms, pp. 193–200, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2005.
  • Hwang, H.-K., Profiles of random trees: plane-oriented recursive trees, Random Structures Algorithms 30 (2007), 380–413.
  • Mahmoud, H. M., Limiting distributions for path lengths in recursive trees, Probab. Engrg. Inform. Sci. 5 (1991), 53–59.
  • Mahmoud, H. M., Distances in random plane-oriented recursive trees, J. Comput. Appl. Math. 41 (1992), 237–245.
  • Mahmoud, H. M., Evolution of Random Search Trees, Wiley, New York, 1992.
  • Mahmoud, H. M. and Smythe, R. T., On the distribution of leaves in rooted subtrees of recursive trees, Ann. Appl. Probab. 1 (1991), 406–418.
  • Meir, A. and Moon, J. W., On the altitude of nodes in random trees, Canad. J. Math. 30 (1978), 997–1015.
  • Na, H. S. and Rapoport, A., Distribution of nodes of a tree by degree, Math. Biosci. 6 (1970), 313–329.
  • Petrov, V. V., Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Oxford University Press, Oxford, 1995.
  • Pittel, B., Note on the heights of random recursive trees and random m-ary search trees, Random Structures Algorithms 5 (1994), 337–347.
  • Prim, R. C., Shortest connection networks and some generalizations, Bell System Tech. J. 36 (1957), 1389–1401.
  • Pyke, R., Spacings, J. Roy. Statist. Soc. Ser. B 27 (1965), 395–445.
  • Rényi, A., Théorie des éléments saillants d’une suite d’observations, in Colloquium on Combinatorial Methods in Probability Theory, pp. 104–115, Mathematisk Institut, Aarhus Universitet, Aarhus, 1962.
  • Rosenthal, H. P., On the subspaces of Lp (p>2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273–303.
  • Smythe, R. T. and Mahmoud, H. M., A survey of recursive trees, Teor. Ĭmovīr. Mat. Stat. 51 (1994), 1–29 (Ukrainian). English transl.: Theory Probab. Math. Statist. 51 (1995), 1–27 (1996).
  • Sulzbach, H., A functional limit law for the profile of plane-oriented recursive trees, in Fifth Colloquium on Mathematics and Computer Science, pp. 339–350, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008.
  • Szymański, J., On a nonuniform random recursive tree, in Random Graphs ’85 (Poznań , 1985 ), North-Holland Math. Stud. 144, pp. 297–306, North-Holland, Amsterdam, 1987.
  • Szymański, J., On the maximum degree and height of a random recursive tree, in Random Graphs ’87 (Poznań , 1987 ), pp. 313–324, Wiley, Chichester, 1990.
  • Timofeev, E. A., Random minimal trees, Teor. Veroyatnost. i Primenen. 29 (1984), 134–141 (Russian). English transl.: Theory Probab. Appl. 29 (1985), 134–141.
  • Tsukiji, T. and Xhafa, F., On the depth of randomly generated circuits, in Algorithm—ESA ‘96 , Lecture Notes in Comput. Sci. 1136, pp. 208–220, Springer, Berlin, 1996.