Arkiv för Matematik

Matrix subspaces and determinantal hypersurfaces

Marko Huhtanen

Full-text: Open access

Abstract

Nonsingular matrix subspaces can be separated into two categories: by being either invertible, or merely possessing invertible elements. The former class was introduced for factoring matrices into the product of two matrices. With the latter, the problem of characterizing the inverses and related nonlinear matrix geometries arises. For the singular elements there is a natural concept of spectrum defined in terms of determinantal hypersurfaces, linking matrix analysis with algebraic geometry. With this, matrix subspaces and the respective Grassmannians are split into equivalence classes. Conditioning of matrix subspaces is addressed.

Note

Supported by the Academy of Finland.

Article information

Source
Ark. Mat., Volume 48, Number 1 (2010), 57-77.

Dates
Received: 30 April 2008
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907105

Digital Object Identifier
doi:10.1007/s11512-009-0098-0

Mathematical Reviews number (MathSciNet)
MR2594586

Zentralblatt MATH identifier
1191.15010

Rights
2009 © Institut Mittag-Leffler

Citation

Huhtanen, Marko. Matrix subspaces and determinantal hypersurfaces. Ark. Mat. 48 (2010), no. 1, 57--77. doi:10.1007/s11512-009-0098-0. https://projecteuclid.org/euclid.afm/1485907105


Export citation

References

  • Adams, J., Lax, P. and Phillips, R., On matrices whose real linear combinations are nonsingular, Proc. Amer. Math. Soc. 16 (1965), 318–322.
  • Aron, R. M. and Hájek, P., Zero sets of polynomials in several variables, Arch. Math. (Basel ) 86 (2006), 561–568.
  • Asplund, E., Inverses of matrices aij which satisfy aij=0 for j> i+p, Math. Scand. 7 (1959), 57–60.
  • Beauville, A., Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64.
  • Bhatia, R., Matrix factorizations and their perturbations, Linear Algebra Appl. 197, 198 (1994), 245–276.
  • Birkhoff, G., Two Hadamard numbers for matrices, Comm. ACM 18 (1975), 25–29.
  • Byckling, M. and Huhtanen, M., Approximate factoring of the inverse, Preprint, 2008.
  • Causin, A. and Pirola, G. P., A note on spaces of symmetric matrices, Linear Algebra Appl. 426 (2007), 533–539.
  • Effros, E. G. and Ruan, Z.-J., Operator Spaces, Oxford University Press, New York, 2000.
  • Falikman, D., Friedland, S. and Loewy, R., On spaces of matrices containing a nonzero matrix of bounded rank, Pacific J. Math. 207 (2002), 157–176.
  • Fiedler, M., Special Matrices and Their Applications in Numerical Mathematics, Martinus Nijhoff Publishers, Dordrecht, 1986.
  • Flanders, H. and Wimmer, H., On the matrix equations AXXB=C and AXYB=C, SIAM J. Appl. Math. 32 (1977), 707–710.
  • Gohberg, I. and Olshevsky, V., Circulants, displacements and decompositions of matrices, Integral Equations Operator Theory 15 (1992), 730–743.
  • Golub, G. H. and Van Loan, C. F., Matrix Computations, 3rd ed., The John Hopkins University Press, Baltimore, 1996.
  • Guggenheimer, H., Edelman, A. and Johnson, C. R., A simple estimate of the condition number of a linear system, College Math. J. 26 (1995), 2–5.
  • Harris, J., Algebraic Geometry, Springer, New York, 1992.
  • Horn, R. A. and Johnson, C. R., Matrix Analysis, Cambridge Univ. Press, Cambridge, 1987.
  • Horn, R. A. and Johnson, C. R., Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991.
  • Huhtanen, M., A matrix nearness problem related to iterative methods, SIAM J. Numer. Anal. 39 (2001), 407–422.
  • Huhtanen, M., Averaging operators for exponential splittings, Numer. Math. 106 (2007), 511–528.
  • Huhtanen, M., Factoring matrices into the product of two matrices, BIT 47 (2007), 793–808.
  • Jahnke, T. and Lubich, C., Error bounds for exponential operator splittings, BIT 40 (2000), 735–744.
  • Kostrikin, A. I. and Manin, Yu., Linear Algebra and Geometry, Gordon and Breach Science Publ., New York, 1989.
  • Laffey, T. J., Conjugacy and factorization results on matrix groups, in Functional Analysis and Operator Theory (Warsaw, 1992 ), Banach Center Publications 30, pp. 203–221, Polish Academy of Sciences, Warsaw, 1994.
  • Lax, P., On the factorization of matrix valued functions, Comm. Pure Appl. Math. 24 (1976), 683–688.
  • Piontkowski, J., Linear symmetric determinantal hypersurfaces, Michigan Math. J. 54 (2006), 117–146.
  • Postnikov, M., Lectures in Geometry, Smooth Manifolds, Nauka, Moscow, 1987 (Russian). English transl.: Mir, Moscow, 1989.
  • Van Loan, C. and Pitsianis, N., Approximation with Kronecker products, in Linear Algebra for Large Scale and Real-Time Applications (Leuven, 1992 ), pp. 293–314, Kluwer, Dordrecht, 1993.
  • Wu, P. Y., The operator factorization problems, Linear Algebra Appl. 117 (1989), 35–63.
  • Ye, Q., Zha, H. and Li, R.-C., Analysis of an alignment algorithm for nonlinear dimensionality reduction, BIT 47 (2007), 873–885.