Arkiv för Matematik

  • Ark. Mat.
  • Volume 48, Number 1 (2010), 207-210.

A long ℂ2 which is not Stein

Erlend Fornæss Wold

Full-text: Open access

Abstract

We construct a 2-dimensional complex manifold X which is the increasing union of proper subdomains that are biholomorphic to ℂ2, but X is not Stein.

Article information

Source
Ark. Mat., Volume 48, Number 1 (2010), 207-210.

Dates
Received: 23 November 2007
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907099

Digital Object Identifier
doi:10.1007/s11512-008-0084-y

Mathematical Reviews number (MathSciNet)
MR2594593

Zentralblatt MATH identifier
1189.32004

Rights
2008 © Institut Mittag-Leffler

Citation

Fornæss Wold, Erlend. A long ℂ 2 which is not Stein. Ark. Mat. 48 (2010), no. 1, 207--210. doi:10.1007/s11512-008-0084-y. https://projecteuclid.org/euclid.afm/1485907099


Export citation

References

  • Andersén, E. and Lempert, L., On the group of holomorphic automorphisms of Cn, Invent. Math. 110 (1992), 371–388.
  • Fornæss, J. E., An increasing sequence of Stein manifolds whose limit is not Stein, Math. Ann. 223 (1976), 275–277.
  • Fornæss, J. E., Short ℂk, in Complex Analysis in Several Variables, Adv. Stud. Pure Math. 42, pp. 95–108, Math. Soc. Japan, Tokyo, 2004.
  • Wermer, J., An example concerning polynomial convexity, Math. Ann. 139 (1959), 147–150.
  • Wold, E. F., Fatou–Bieberbach domains, Internat. J. Math. 16:10 (2005), 1119–1130.
  • Wold, E. F., A Fatou–Bieberbach domain in ℂ2 which is not Runge, Math. Ann. 340 (2008), 775–780.