Arkiv för Matematik

  • Ark. Mat.
  • Volume 48, Number 1 (2010), 177-206.

Smooth tropical surfaces with infinitely many tropical lines

Magnus Dehli Vigeland

Full-text: Open access


We study the tropical lines contained in smooth tropical surfaces in ℝ3. On smooth tropical quadric surfaces we find two one-dimensional families of tropical lines, like in classical algebraic geometry. Unlike the classical case, however, there exist smooth tropical surfaces of any degree with infinitely many tropical lines.

Article information

Ark. Mat., Volume 48, Number 1 (2010), 177-206.

Received: 15 January 2008
Revised: 13 October 2009
First available in Project Euclid: 31 January 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

2009 © Institut Mittag-Leffler


Vigeland, Magnus Dehli. Smooth tropical surfaces with infinitely many tropical lines. Ark. Mat. 48 (2010), no. 1, 177--206. doi:10.1007/s11512-009-0116-2.

Export citation


  • Franz, M., Convex—a maple package for convex geometry, Version 1.1, 2006.
  • Gathmann, A., Tropical algebraic geometry, Jahresber. Deutsch. Math.-Verein. 108 (2006), 3–32.
  • Gathmann, A. and Markwig, H., The numbers of tropical plane curves through points in general position, J. Reine Angew. Math. 602 (2007), 155–177.
  • Gelfand, I. M., Kapranov, M. M. and Zelevinsky, A. V., Discriminants, Resultants, and Multidimensional Determinants, Mathematics: Theory & Applications, Birkhäuser, Boston, MA, 1994.
  • Katz, E., Markwig, H. and Markwig, T., The j-invariant of a plane tropical cubic, J. Algebra 320 (2008), 3832–3848.
  • Maple 10 software, copyright by Waterloo Maple Inc.
  • Mikhalkin, G., Enumerative tropical algebraic geometry in ℝ2, J. Amer. Math. Soc. 18 (2005), 313–377.
  • Mikhalkin, G., Moduli spaces of rational tropical curves, Preprint, 2007.
  • Mikhalkin, G. and Zharkov, I., Tropical curves, their Jacobians and Theta functions, in Curves and Abelian Varieties, Contemporary Mathematics 465, pp. 203–230, Amer. Math. Soc., Providence, RI, 2008.
  • Speyer, D. and Sturmfels, B., The tropical Grassmannian, Adv. Geom. 4 (2004), 389–411.
  • Sturmfels, B., Richter-Gebert, J. and Theobald, T., First steps in tropical geometry, in Idempotent Mathematics and Mathematical Physics, Contemporary Mathematics 377, pp. 289–317, Amer. Math. Soc., Providence, RI, 2005.
  • Vigeland, M. D., Tropical lines on smooth tropical surfaces, Preprint, 2007.
  • Vigeland, M. D., The group law on a tropical elliptic curve, Math. Scand. 104 (2009), 188–204.