Arkiv för Matematik
- Ark. Mat.
- Volume 47, Number 1 (2009), 143-181.
The Hilbert scheme of points for supersingular abelian surfaces
Full-text: Open access
Abstract
We study the geometry of Hilbert schemes of points on abelian surfaces and Beauville’s generalized Kummer varieties in positive characteristics. The main result is that, in characteristic two, the addition map from the Hilbert scheme of two points to the abelian surface is a quasifibration such that all fibers are nonsmooth. In particular, the corresponding generalized Kummer surface is nonsmooth, and minimally elliptic singularities occur in the supersingular case. We unravel the structure of the singularities in dependence of p-rank and a-number of the abelian surface. To do so, we establish a McKay Correspondence for Artin’s wild involutions on surfaces. Along the line, we find examples of canonical singularities that are not rational singularities.
Article information
Source
Ark. Mat., Volume 47, Number 1 (2009), 143-181.
Dates
Received: 19 February 2007
Revised: 8 August 2007
First available in Project Euclid: 31 January 2017
Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907062
Digital Object Identifier
doi:10.1007/s11512-007-0065-6
Mathematical Reviews number (MathSciNet)
MR2480919
Zentralblatt MATH identifier
1190.14032
Rights
2008 © Institut Mittag-Leffler
Citation
Schröer, Stefan. The Hilbert scheme of points for supersingular abelian surfaces. Ark. Mat. 47 (2009), no. 1, 143--181. doi:10.1007/s11512-007-0065-6. https://projecteuclid.org/euclid.afm/1485907062
References
- Aramova, A. G., Symmetric products of Gorenstein varieties, J. Algebra 146 (1992), 482–496.Zentralblatt MATH: 0759.14036
Digital Object Identifier: doi:10.1016/0021-8693(92)90079-2
Mathematical Reviews (MathSciNet): MR1152916 - Artin, M., Algebraic construction of Brieskorn’s resolutions, J. Algebra 29 (1974), 330–348.Zentralblatt MATH: 0292.14013
Digital Object Identifier: doi:10.1016/0021-8693(74)90102-1
Mathematical Reviews (MathSciNet): MR354665 - Artin, M., Wildly ramified Z/2 actions in dimension two, Proc. Amer. Math. Soc. 52 (1975), 60–64.Zentralblatt MATH: 0315.14015
Digital Object Identifier: doi:10.2307/2040100
Mathematical Reviews (MathSciNet): MR374136 - Artin, M., Lectures on Deformations of Singularities, Lect. Math. Phys. 54, Tata Institute of Fundamental Research, Bombay, 1976.Zentralblatt MATH: 0395.14003
- Artin, M., Coverings of the rational double points in characteristic p, in Complex Analysis and Algebraic Geometry, pp. 11–22, Iwanami Shoten, Tokyo, 1977.
- Bayer, D. and Eisenbud, D., Ribbons and their canonical embeddings, Trans. Amer. Math. Soc. 347 (1995), 719–756.Zentralblatt MATH: 0853.14016
Digital Object Identifier: doi:10.2307/2154871
Mathematical Reviews (MathSciNet): MR1273472 - Beauville, A., Complex Algebraic Surfaces, London Math. Soc. Lecture Note Ser. 68, Cambridge University Press, Cambridge, 1983.Zentralblatt MATH: 0512.14020
- Beauville, A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983), 755–782.
- Bombieri, E. and Mumford, D., Enriques’ classification of surfaces in char. p. III, Invent. Math. 35 (1976), 197–232.Zentralblatt MATH: 0336.14010
Digital Object Identifier: doi:10.1007/BF01390138
Mathematical Reviews (MathSciNet): MR491720 - Bosch, S., Lütkebohmert, W. and Raynaud, M., Néron Models, Ergebnisse der Mathematik und ihrer Grenzgebiete 21, Springer, Berlin–Heidelberg, 1990.Zentralblatt MATH: 0705.14001
- Bourbaki, N., Éléments de Mathématique. Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Masson, Paris, 1981.
- Bourbaki, N., Algebra. II. Chapters 4–7, Elements of Mathematics (Berlin), Springer, Berlin–Heidelberg, 1990.
- Brion, M. and Kumar, S., Frobenius Splitting Methods in Geometry and Representation Theory, Progr. Math. 231, Birkhäuser, Boston, MA, 2005.Zentralblatt MATH: 1072.14066
- Campbell, H. E. A., Geramita, A. V., Hughes, I. P., Shank, R. J. and Wehlau, D. L., Non-Cohen–Macaulay vector invariants and a Noether bound for a Gorenstein ring of invariants, Canad. Math. Bull. 42 (1999), 155–161.
- Ekedahl, T., Canonical models of surfaces of general type in positive characteristic, Publ. Math. Inst. Hautes Études Sci. 67 (1988), 97–144.Zentralblatt MATH: 0674.14028
Digital Object Identifier: doi:10.1007/BF02699128
Mathematical Reviews (MathSciNet): MR972344 - Elkik, R., Rationalité des singularités canoniques, Invent. Math. 64 (1981), 1–6.Zentralblatt MATH: 0498.14002
Digital Object Identifier: doi:10.1007/BF01393930
Mathematical Reviews (MathSciNet): MR621766 - Ellingsrud, G. and Skjelbred, T., Profondeur d’anneaux d’invariants en caractéristique p, Compos. Math. 41 (1980), 233–244.
- Grauert, H. and Riemenschneider, O., Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Invent. Math. 11 (1970), 263–292.Zentralblatt MATH: 0202.07602
Digital Object Identifier: doi:10.1007/BF01403182
Mathematical Reviews (MathSciNet): MR302938 - Grothendieck, A., Techniques de construction et théorèmes d’existence en géométrie algébrique IV: Les schémas de Hilbert, in Séminaire Bourbaki Volume 1960/1961, Exposé 221, pp. 249–276, Benjamin, New York–Amsterdam, 1966.
- Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas II, Publ. Math. Inst. Hautes Études Sci. 24 (1965).
- Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math. Inst. Hautes Études Sci. 32 (1967).
- Hartshorne, R., Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.Zentralblatt MATH: 0367.14001
- Hartshorne, R., Generalized divisors on Gorenstein schemes, K-Theory 8 (1994), 287–339.Zentralblatt MATH: 0826.14005
Digital Object Identifier: doi:10.1007/BF00960866
Mathematical Reviews (MathSciNet): MR1291023 - Hirokado, M., Deformations of rational double points and simple elliptic singularities in characteristic p, Osaka J. Math. 41 (2004), 605–616.
- Hochster, M. and Eagon, J. A., Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058.Zentralblatt MATH: 0244.13012
Digital Object Identifier: doi:10.2307/2373744
Mathematical Reviews (MathSciNet): MR302643 - Ishii, A., On the McKay correspondence for a finite small subgroup of GL(2, C), J. Reine Angew. Math. 549 (2002), 221–233.
- Ito, Y. and Nakajima, H., McKay correspondence and Hilbert schemes in dimension three, Topology 39 (2000), 1155–1191.Zentralblatt MATH: 0995.14001
Digital Object Identifier: doi:10.1016/S0040-9383(99)00003-8
Mathematical Reviews (MathSciNet): MR1783852 - Ito, Y. and Nakamura, I., Hilbert schemes and simple singularities, in New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser. 264, pp. 151–233, Cambridge University Press, Cambridge, 1999.
- Iversen, B., Linear Determinants with Applications to the Picard Scheme of a Family of Algebraic Curves, Lecture Notes in Math. 174, Springer, Berlin–Heidelberg, 1970.Zentralblatt MATH: 0205.50802
- Katsura, T., On Kummer surfaces in characteristic 2, in Proceedings of the International Symposium on Algebraic Geometry (Kyoto University, Kyoto, 1977), pp. 525–542, Kinokuniya Book Store, Tokyo, 1978.
- Kemper, G., The depth of invariant rings and cohomology, J. Algebra 245 (2001), 463–531.Zentralblatt MATH: 1031.13002
Digital Object Identifier: doi:10.1006/jabr.2001.8840
Mathematical Reviews (MathSciNet): MR1863889 - Kidoh, R., Hilbert schemes and cyclic quotient surface singularities, Hokkaido Math. J. 30 (2001), 91–103.
- Laufer, H. B., Deformations of resolutions of two-dimensional singularities, in Complex Analysis 1972, Vol. I: Geometry of Singularities (Rice Univ., Houston, TX, 1972), Rice Univ. Studies 59:1, pp. 53–96. Rice Univ., Houston, TX, 1972.
- Laufer, H. B., Taut two-dimensional singularities, Math. Ann. 205 (1973), 131–164.Zentralblatt MATH: 0281.32010
Digital Object Identifier: doi:10.1007/BF01350842
Mathematical Reviews (MathSciNet): MR333238 - Laufer, H. B., On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257–1295.Zentralblatt MATH: 0384.32003
Digital Object Identifier: doi:10.2307/2374025
Mathematical Reviews (MathSciNet): MR568898 - Mumford, D., The topology of normal singularities of an algebraic surface and a criterion for simplicity, Publ. Math. Inst. Hautes Études Sci. 9 (1961), 5–22.Zentralblatt MATH: 0108.16801
Digital Object Identifier: doi:10.1007/BF02698717
Mathematical Reviews (MathSciNet): MR153682 - Oort, F., Which abelian surfaces are products of elliptic curves?, Math. Ann. 214 (1975), 35–47.Zentralblatt MATH: 0283.14007
Digital Object Identifier: doi:10.1007/BF01428253
Mathematical Reviews (MathSciNet): MR364264 - Reid, M., Chapters on algebraic surfaces, in Complex Algebraic Geometry (Park City, UT, 1993), IAS/Park City Math. Ser. 3, pp. 3–159, Amer. Math. Soc., Providence, RI, 1997.
- Schröer, S., On contractible curves on normal surfaces, J. Reine Angew. Math. 524 (2000), 1–15.
- Schröer, S., Kummer surfaces for the self-product of the cuspidal rational curve, J. Algebraic Geom. 16 (2007), 305–346.
- Schröer, S., Weak del Pezzo surfaces with irregularity, Tôhoku Math. J. 59 (2007), 293–322.
- Shioda, T., Kummer surfaces in characteristic 2, Proc. Japan Acad. Ser. A Math. Sci. 50 (1974), 718–722.
- Vistoli, A., The deformation theory of local complete intersections, Preprint, 1997. arXiv:alg-geom/9703008.
- Wagreich, P., Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419–454.Zentralblatt MATH: 0204.54501
Digital Object Identifier: doi:10.2307/2373333
Mathematical Reviews (MathSciNet): MR291170

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Motivic hyper-Kähler resolution conjecture, I: Generalized Kummer varieties
Fu, Lie, Tian, Zhiyu, and Vial, Charles, Geometry & Topology, 2019 - Kummer surfaces associated to (1,2)-polarized abelian surfaces
Mehran, Afsaneh, Nagoya Mathematical Journal, 2011 - Numerical Godeaux surfaces with an involution in positive characteristic
Kim, Soonyoung, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 2014
- Motivic hyper-Kähler resolution conjecture, I: Generalized Kummer varieties
Fu, Lie, Tian, Zhiyu, and Vial, Charles, Geometry & Topology, 2019 - Kummer surfaces associated to (1,2)-polarized abelian surfaces
Mehran, Afsaneh, Nagoya Mathematical Journal, 2011 - Numerical Godeaux surfaces with an involution in positive characteristic
Kim, Soonyoung, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 2014 - Numerically trivial involutions of Kummer type of an Enriques surface
Mukai, Shigeru, Kyoto Journal of Mathematics, 2010 - Kummer's quartics and numerically reflective involutions of Enriques surfaces
MUKAI, Shigeru, Journal of the Mathematical Society of Japan, 2012 - Multiple fibers on elliptic surfaces in positive characteristic
Kawazoe, Mitsuru, Journal of Mathematics of Kyoto University, 2000 - Involutions on numerical Campedelli surfaces
Calabri, Alberto, Lopes, Margarida Mendes, and Pardini, Rita, Tohoku Mathematical Journal, 2008 - K3 surfaces with an automorphism of order 11
Schütt, Matthias, Tohoku Mathematical Journal, 2013 - Hasse principle for Kummer varieties
Harpaz, Yonatan and Skorobogatov, Alexei, Algebra & Number Theory, 2016 - On Ballico-Hefez curves and associated supersingular surfaces
Hoang, Thanh Hoai and Shimada, Ichiro, Kodai Mathematical Journal, 2015