Arkiv för Matematik
- Ark. Mat.
- Volume 46, Number 1 (2008), 143-151.
Sharp estimates for maximal operators associated to the wave equation
Keith M. Rogers and Paco Villarroya
Full-text: Open access
Abstract
The wave equation, ∂ttu=Δu, in ℝn+1, considered with initial data u(x,0)=f∈Hs(ℝn) and u’(x,0)=0, has a solution which we denote by $\frac{1}{2}(e^{it\sqrt{-\Delta}}f+e^{-it\sqrt{-\Delta}}f)$. We give almost sharp conditions under which $\sup_{0<t<1}|e^{\pm it\sqrt{-\Delta}}f|$ and $\sup_{t\in\mathbb{R}}|e^{\pm it\sqrt{-\Delta}}f|$ are bounded from Hs(ℝn) to Lq(ℝn).
Article information
Source
Ark. Mat., Volume 46, Number 1 (2008), 143-151.
Dates
Received: 30 October 2006
First available in Project Euclid: 31 January 2017
Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907026
Digital Object Identifier
doi:10.1007/s11512-007-0063-8
Mathematical Reviews number (MathSciNet)
MR2379688
Zentralblatt MATH identifier
1142.35492
Rights
2007 © Institut Mittag-Leffler
Citation
Rogers, Keith M.; Villarroya, Paco. Sharp estimates for maximal operators associated to the wave equation. Ark. Mat. 46 (2008), no. 1, 143--151. doi:10.1007/s11512-007-0063-8. https://projecteuclid.org/euclid.afm/1485907026
References
- Bourgain, J., A remark on Schrödinger operators, Israel J. Math. 77 (1992), 1–16.Zentralblatt MATH: 0798.35131
Digital Object Identifier: doi:10.1007/BF02808007
Mathematical Reviews (MathSciNet): MR1194782 - Bourgain, J., Some new estimates on oscillatory integrals, in Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser. 42, pp. 83–112, Princeton Univ. Press, Princeton, NJ, 1995.
- Carbery, A., Radial Fourier multipliers and associated maximal functions, in Recent Progress in Fourier Analysis (El Escorial, 1983), North-Holland Math. Stud. 111, pp. 49–56, North-Holland, Amsterdam, 1985.
- Carleson, L., Some analytic problems related to statistical mechanics, in Euclidean Harmonic Analysis (Proc. Sem., Univ. Maryland, College Park, MD, 1979), Lecture Notes in Math. 779, pp. 5–45, Springer, Berlin–Heidelberg, 1980.
- Cowling, M. G., Pointwise behavior of solutions to Schrödinger equations, in Harmonic Analysis (Cortona, 1982), Lecture Notes in Math. 992, pp. 83–90, Springer, Berlin–Heidelberg, 1983.
- Dahlberg, B. E. J. and Kenig, C. E., A note on the almost everywhere behavior of solutions to the Schrödinger equation, in Harmonic Analysis (Minneapolis, MN, 1981), Lecture Notes in Math. 908, pp. 205–209, Springer, Berlin–Heidelberg, 1982.Digital Object Identifier: doi:10.1007/BFb0093289
- Kenig, C. E., Ponce, G. and Vega, L., Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33–69.Zentralblatt MATH: 0738.35022
Digital Object Identifier: doi:10.1512/iumj.1991.40.40003
Mathematical Reviews (MathSciNet): MR1101221 - Kenig, C. E., Ponce, G. and Vega, L., Well-posedness of the initial value problem for the Korteweg–de Vries equation, J. Amer. Math. Soc. 4 (1991), 323–347.Zentralblatt MATH: 0737.35102
Digital Object Identifier: doi:10.2307/2939277
Mathematical Reviews (MathSciNet): MR1086966 - Kenig, C. E. and Ruiz, A., A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239–246.
- Lee, S., On pointwise convergence of the solutions to Schrödinger equations in R2, Int. Math. Res. Not. (2006), Art. ID 32597, 21pp.
- Moyua, A., Vargas, A. and Vega, L., Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Not. 1996:16 (1996), 793–815.Zentralblatt MATH: 0868.35024
Digital Object Identifier: doi:10.1155/S1073792896000499
Mathematical Reviews (MathSciNet): MR1413873 - Moyua, A., Vargas, A. and Vega, L., Restriction theorems and maximal operators related to oscillatory integrals in R3, Duke Math. J. 96 (1999), 547–574.Zentralblatt MATH: 0946.42011
Digital Object Identifier: doi:10.1215/S0012-7094-99-09617-5
Mathematical Reviews (MathSciNet): MR1671214 - Rogers, K. M., A local smoothing estimate for the Schrödinger equation, Preprint, 2007.
- Rogers, K. M., Vargas, A. and Vega, L., Pointwise convergence of solutions to the nonelliptic Schrödinger equation, Indiana Univ. Math. J. 55 (2006), 1893–1906.Zentralblatt MATH: 1124.35071
Digital Object Identifier: doi:10.1512/iumj.2006.55.2827
Mathematical Reviews (MathSciNet): MR2284549 - Rogers, K. M. and Villarroya, P., Global estimates for the Schrödinger maximal operator. Ann. Acad. Sci. Fenn. Math. 2 (2007), 425–435.Mathematical Reviews (MathSciNet): MR2337486
- Sjölin, P., Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), 699–715.Zentralblatt MATH: 0631.42010
Digital Object Identifier: doi:10.1215/S0012-7094-87-05535-9
Mathematical Reviews (MathSciNet): MR904948 - Sjölin, P., Global maximal estimates for solutions to the Schrödinger equation, Studia Math. 110 (1994), 105–114.
- Sjölin, P., Lp maximal estimates for solutions to the Schrödinger equation, Math. Scand. 81 (1997), 35–68 (1998).Mathematical Reviews (MathSciNet): MR1490774
- Sjölin, P., A counter-example concerning maximal estimates for solutions to equations of Schrödinger type, Indiana Univ. Math. J. 47 (1998), 593–599.Zentralblatt MATH: 0913.42017
Digital Object Identifier: doi:10.1512/iumj.1998.47.1560
Mathematical Reviews (MathSciNet): MR1647940 - Sjölin, P., Spherical harmonics and maximal estimates for the Schrödinger equation, Ann. Acad. Sci. Fenn. Math. 30 (2005), 393–406.
- Strichartz, R. S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705–714.Zentralblatt MATH: 0372.35001
Digital Object Identifier: doi:10.1215/S0012-7094-77-04430-1
Mathematical Reviews (MathSciNet): MR512086 - Tao, T., A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (2003), 1359–1384.Zentralblatt MATH: 1068.42011
Digital Object Identifier: doi:10.1007/s00039-003-0449-0
Mathematical Reviews (MathSciNet): MR2033842 - Tao, T. and Vargas, A., A bilinear approach to cone multipliers. II. Applications, Geom. Funct. Anal. 10 (2000), 216–258.Zentralblatt MATH: 0949.42013
Digital Object Identifier: doi:10.1007/s000390050007
Mathematical Reviews (MathSciNet): MR1748921 - Vega, L., Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874–878.Zentralblatt MATH: 0654.42014
Digital Object Identifier: doi:10.2307/2047326
Mathematical Reviews (MathSciNet): MR934859 - Vega, L., El multiplicador de Schrödinger. La funcion maximal y los operadores de restricción, Ph.D. thesis Universidad Autónoma de Madrid, Madrid 1988.
- Walther, B. G., Some Lp(L∞)- and L2(L2)-estimates for oscillatory Fourier transforms, in Analysis of Divergence (Orono, ME, 1997), Appl. Numer. Harmon. Anal., pp. 213–231, Birkhäuser, Boston, MA, 1999.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- A maximal inequality associated to Schr\"{o}dinger type equation
CHO, Yonggeun, LEE, Sanghyuk, and SHIM, Yongsun, Hokkaido Mathematical Journal, 2006 - Slow blow-up solutions for the H1(R3) critical focusing semilinear wave equation
Krieger, Joachim, Schlag, Wilhelm, and Tataru, Daniel, Duke Mathematical Journal, 2009 - Asymptotic behavior of classical solutions to a system of semilinear wave equations in low space dimensions
KUBO, Hideo and KUBOTA, Kôji, Journal of the Mathematical Society of Japan, 2001
- A maximal inequality associated to Schr\"{o}dinger type equation
CHO, Yonggeun, LEE, Sanghyuk, and SHIM, Yongsun, Hokkaido Mathematical Journal, 2006 - Slow blow-up solutions for the H1(R3) critical focusing semilinear wave equation
Krieger, Joachim, Schlag, Wilhelm, and Tataru, Daniel, Duke Mathematical Journal, 2009 - Asymptotic behavior of classical solutions to a system of semilinear wave equations in low space dimensions
KUBO, Hideo and KUBOTA, Kôji, Journal of the Mathematical Society of Japan, 2001 - Quasilinear parabolic equations with nonlinear monotone boundary conditions
Lin, Chin-Yuan, Topological Methods in Nonlinear Analysis, 1999 - Lp-Lq estimates for damped wave equations and their applications to semi-linear problem
NARAZAKI, Takashi, Journal of the Mathematical Society of Japan, 2004 - ON SOME NONLINEAR DISSIPATIVE EQUATIONS WITH SUB-CRITICAL NONLINEARITIES
Hayashi, Nakao, Ito, Naoko, Kaikina, Elena I., and Naumkin, Pavel I., Taiwanese Journal of Mathematics, 2004 - Global existence of solutions to semilinear damped wave equation with slowly decaying initial data in exterior domain
Sobajima, Motohiro, Differential and Integral Equations, 2019 - Long time small solutions to nonlinear parabolic equations
Zhimin, Chen, Arkiv för Matematik, 1990 - Scattering operator for semirelativistic Hartree type equation with a short range potential
Hayashi, Nakao, Naumkin, Pavel I., and Ogawa, Takayoshi, Differential and Integral Equations, 2015 - Interior Controllability of the $nD$ Semilinear Heat
Equation
Leiva, H., Merentes, N., and Sanchez, J. L., African Diaspora Journal of Mathematics, 2011