Arkiv för Matematik

  • Ark. Mat.
  • Volume 46, Number 1 (2008), 113-142.

Geometry of spaces of compact operators

Åsvald Lima and Vegard Lima

Full-text: Open access

Abstract

We introduce the notion of compactly locally reflexive Banach spaces and show that a Banach space X is compactly locally reflexive if and only if $\mathcal{K}(Y,X^{**})\subseteq\mathcal{K}(Y,X)^{**}$ for all reflexive Banach spaces Y. We show that X* has the approximation property if and only if X has the approximation property and is compactly locally reflexive. The weak metric approximation property was recently introduced by Lima and Oja. We study two natural weak compact versions of this property. If X is compactly locally reflexive then these two properties coincide. We also show how these properties are related to the compact approximation property and the compact approximation property with conjugate operators for dual spaces.

Article information

Source
Ark. Mat., Volume 46, Number 1 (2008), 113-142.

Dates
Received: 3 March 2006
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485907024

Digital Object Identifier
doi:10.1007/s11512-007-0060-y

Mathematical Reviews number (MathSciNet)
MR2379687

Zentralblatt MATH identifier
1166.46009

Rights
2007 © Institut Mittag-Leffler

Citation

Lima, Åsvald; Lima, Vegard. Geometry of spaces of compact operators. Ark. Mat. 46 (2008), no. 1, 113--142. doi:10.1007/s11512-007-0060-y. https://projecteuclid.org/euclid.afm/1485907024


Export citation

References

  • Casazza, P. G. and Jarchow, H., Self-induced compactness in Banach spaces, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 355–362.
  • Davis, W. J., Figiel, T., Johnson, W. B. and Pełczyński, A., Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311–327.
  • Diestel, J., Jarchow, H. and Tonge, A., Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge, 1995.
  • Fakhoury, H., Sélections linéaires associées au théorème de Hahn–Banach, J. Funct. Anal. 11 (1972), 436–452.
  • Feder, M. and Saphar, P., Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38–49.
  • Godefroy, G., Kalton, N. J. and Saphar, P. D., Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13–59.
  • Godefroy, G. and Saphar, P. D., Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672–695.
  • Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
  • Harmand, P., Werner, D. and Werner, W., M-ideals in Banach Spaces and Banach Algebras, Lect. Notes in Math. 1547, Springer, Berlin–Heidelberg, 1993.
  • Heinrich, S., Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104.
  • Johnson, W. B., A complementary universal conjugate Banach space and its relation to the approximation problem, in Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Israel J. Math. 13 (1972), 301–310.
  • Johnson, W. B. and Oikhberg, T., Separable lifting property and extensions of local reflexivity, Illinois J. Math. 45 (2001), 123–137.
  • Kalton, N. J., Locally complemented subspaces and $\mathcal{L}_{p}$-spaces for 0< p<1, Math. Nachr. 115 (1984), 71–97.
  • Lima, Å., The metric approximation property, norm-one projections and intersection properties of balls, Israel J. Math. 84 (1993), 451–475.
  • Lima, Å., Nygaard, O. and Oja, E., Isometric factorization of weakly compact operators and the approximation property, Israel J. Math. 119 (2000), 325–348.
  • Lima, Å. and Oja, E., Ideals of finite rank operators, intersection properties of balls, and the approximation property, Studia Math. 133 (1999), 175–186.
  • Lima, Å. and Oja, E., Hahn–Banach extension operators and spaces of operators, Proc. Amer. Math. Soc. 130 (2002), 3631–3640.
  • Lima, Å. and Oja, E., Ideals of compact operators, J. Aust. Math. Soc. 77 (2004), 91–110.
  • Lima, Å. and Oja, E., Ideals of operators, approximability in the strong operator topology, and the approximation property, Michigan Math. J. 52 (2004), 253–265.
  • Lima, Å. and Oja, E., The weak metric approximation property, Math. Ann. 333 (2005), 471–484.
  • Lima, Å. and Oja, E., Metric approximation properties and trace mappings, Math. Nachr. 280 (2007), 571–580.
  • Lima, V., Approximation properties for dual spaces, Math. Scand. 93 (2003), 297–312.
  • Lima, V., The weak metric approximation property and ideals of operators, J. Math. Anal. Appl. 334 (2007), 593–603.
  • Lima, V. and Lima, Å., Ideals of operators and the metric approximation property, J. Funct. Anal. 210 (2004), 148–170.
  • Lima, V., Lima, Å. and Nygaard, O., On the compact approximation property, Studia Math. 160 (2004), 185–200.
  • Lindenstrauss, J. and Tzafriri, L., Classical Banach Spaces. I, Springer, Berlin–Heidelberg, 1977.
  • Oja, E., Operators that are nuclear whenever they are nuclear for a larger range space, Proc. Edinb. Math. Soc. 47 (2004), 679–694.
  • Oja, E., The impact of the Radon–Nikodým property on the weak bounded approximation property, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 100 (2006), 325–331.
  • Oja, E. and Põldvere, M., Principle of local reflexivity revisited, Proc. Amer. Math. Soc. 135 (2007), 1081–1088.
  • Ryan, R. A., Introduction to Tensor Products of Banach Spaces, Springer Monogr. Math., Springer, London, 2002.
  • Sims, B. and Yost, D., Linear Hahn–Banach extension operators, Proc. Edinb. Math. Soc. 32 (1989), 53–57.
  • Szankowski, A., $B(\mathcal{H})$ does not have the approximation property, Acta Math. 147 (1981), 89–108.