Arkiv för Matematik

The pluripolar hull of a graph and fine analytic continuation

Tomas Edlund and Burglind Jöricke

Full-text: Open access

Abstract

We show that if the graph of an analytic function in the unit disk D is not complete pluripolar in C2 then the projection of its pluripolar hull contains a fine neighborhood of a point $p\in\partial\mathbf{D}$. Moreover the projection of the pluripolar hull is always finely open. On the other hand we show that if an analytic function f in D extends to a function ℱ which is defined on a fine neighborhood of a point $p\in\partial\mathbf{D}$ and is finely analytic at p then the pluripolar hull of the graph of f contains the graph of ℱ over a smaller fine neighborhood of p. We give several examples of functions with this property of fine analytic continuation. As a corollary we obtain new classes of analytic functions in the disk which have non-trivial pluripolar hulls, among them C functions on the closed unit disk which are nowhere analytically extendible and have infinitely-sheeted pluripolar hulls. Previous examples of functions with non-trivial pluripolar hull of the graph have fine analytic continuation.

Article information

Source
Ark. Mat., Volume 44, Number 1 (2006), 39-60.

Dates
Received: 4 May 2004
First available in Project Euclid: 31 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.afm/1485898932

Digital Object Identifier
doi:10.1007/s11512-005-0004-3

Mathematical Reviews number (MathSciNet)
MR2237210

Zentralblatt MATH identifier
1158.32313

Rights
2006 © Institut Mittag-Leffler

Citation

Edlund, Tomas; Jöricke, Burglind. The pluripolar hull of a graph and fine analytic continuation. Ark. Mat. 44 (2006), no. 1, 39--60. doi:10.1007/s11512-005-0004-3. https://projecteuclid.org/euclid.afm/1485898932


Export citation

Bibliography

  • Brelot, M., Eléments de la théorie classique du potentiel, Les cours de Sorbonne, 3e cycle, Centre de Documentation Universitaire, Paris, 1959.
  • Edigarian, A. and Wiegerinck, J., The pluripolar hull of the graph of a holomorphic function with polar singularities, Indiana Univ. Math. J. 52 (2003), 1663–1680.
  • Edigarian, A. and Wiegerinck, J., Graphs that are not complete pluripolar, Proc. Amer. Math. Soc. 131 (2003), 2459–2465.
  • Edigarian, A. and Wiegerinck, J., Determination of the pluripolar hull of graphs of certain holomorphic functions, Ann. Inst. Fourier (Genoble) 54 (2004), 2085–2104.
  • Edlund, T., Complete pluripolar curves and graphs, Ann. Polon. Math. 84 (2004), 75–86.
  • Fuglede, B., Finely holomorphic functions. A survey, Rev. Roumaine Math. Pures Appl. 33 (1988), 283–295.
  • Josefson, B., On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on Cn, Ark. Mat. 16 (1978), 109–115.
  • Klimek, M., Pluripotential Theory, Oxford University Press, New York, 1991.
  • Levenberg, N., Martin, G. and Poletsky, E. A., Analytic disks and pluripolar sets, Indiana Univ. Math. J. 41 (1992), 515–532.
  • Levenberg, N. and Poletsky, E. A., Pluripolar hulls, Michigan Math. J. 46 (1999), 151–162.
  • Ransford, T., Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1994.
  • Sadullaev, A., Plurisubharmonic measures and capacities on complex manifolds, Uspekhi Mat. Nauk 36:4 (1981), 53–105, 247 (Russian). English transl.: Russian Math. Surveys 36:4 (1981), 61–119.
  • Siciak, J., Pluripolar sets and pseudocontinuation, Complex analysis and dynamical systems II, Contemp. Math. 382 (2005), 385–394.
  • Siciak, J., Functions with complete pluripolar graphs, Preprint.
  • Wiegerinck, J., The pluripolar hull of {w=e-1/z}, Ark. Mat. 38 (2000), 201–208.
  • Wiegerinck, J., Graphs of holomorphic functions with isolated singularities are complete pluripolar, Michigan Math. J. 47 (2000), 191–197.
  • Zériahi, A., Ensembles pluripolaires exceptionnels pour la croissance partielle des fonctions holomorphes, Ann. Pol. Math. 50 (1989), 81–91.
  • Zwonek, W., A note on pluripolar hulls of graphs of Blaschke products, Potential Anal. 22:2 (2005), 195–206.